Source code for xrayutilities.simpack.fit

# This file is part of xrayutilities.
#
# xrayutilities is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>.
#
# Copyright (c) 2016-2021, 2023 Dominik Kriegner <dominik.kriegner@gmail.com>

import numpy
from lmfit import Model

from .. import utilities
from . import models


[docs] class FitModel(Model): """ Wrapper for the lmfit Model class working for instances of LayerModel Typically this means that after initialization of `FitModel` you want to use make_params to get a `lmfit.Parameters` list which one customizes for fitting. Later on you can call `fit` and `eval` methods with those parameter list. """
[docs] def __init__(self, lmodel, verbose=False, plot=False, elog=True, **kwargs): """ initialization of a FitModel which uses lmfit for the actual fitting, and generates an according lmfit.Model internally for the given pre-configured LayerModel, or subclasses thereof which includes models for reflectivity, kinematic and dynamic diffraction. Parameters ---------- lmodel : LayerModel pre-configured instance of LayerModel or any subclass verbose : bool, optional flag to enable verbose printing during fitting plot : bool or str, optional flag to decide wheter an plot should be created showing the fit's progress. If plot is a string it will be used as figure name, which makes reusing the figures easier. elog : bool, optional flag to enable a logarithmic error metric between model and data. Since the dynamic range of data is often large its often benefitial to keep this enabled. kwargs : dict, optional additional keyword arguments are forwarded to the `simulate` method of `lmodel` """ self.verbose = verbose self.plot = plot self.elog = elog assert isinstance(lmodel, models.LayerModel) self.lmodel = lmodel # generate dynamic function for model evalution funcstr = "def func(x, " # add LayerModel parameters for p in self.lmodel.fit_paramnames: funcstr += f"{p}, " # add LayerStack parameters for layer in self.lmodel.lstack: for param in self.lmodel.lstack_params: funcstr += f'{layer.name}_{param}, ' if self.lmodel.lstack_structural_params: for param in layer._structural_params: funcstr += f'{layer.name}_{param}, ' funcstr += "lmodel=self.lmodel, **kwargs):\n" # define modelfunc content for p in self.lmodel.fit_paramnames: funcstr += f" setattr(lmodel, '{p}', {p})\n" for i, l in enumerate(self.lmodel.lstack): for param in self.lmodel.lstack_params: varname = f'{l.name}_{param}' cmd = " setattr(lmodel.lstack[{}], '{}', {})\n" funcstr += cmd.format(i, param, varname) if self.lmodel.lstack_structural_params: for param in l._structural_params: varname = f'{l.name}_{param}' cmd = " setattr(lmodel.lstack[{}], '{}', {})\n" funcstr += cmd.format(i, param, varname) # perform actual model calculation funcstr += " return lmodel.simulate(x, **kwargs)" namespace = {'self': self} exec(funcstr, {'lmodel': self.lmodel}, namespace) self.func = namespace['func'] self.emetricfunc = numpy.log10 if self.elog else lambda x: x def _residual(params, data, weights, **kwargs): """ Return the residual. This is a (simplified, only real values) reimplementation of the lmfit.Model._residual function which adds the possibility of a logarithmic error metric. Default residual: (data-model)*weights. """ scale = self.emetricfunc model = scale(self.eval(params, **kwargs)) sdata = scale(data) mask = numpy.logical_and(numpy.isfinite(model), numpy.isfinite(sdata)) diff = model[mask] - sdata[mask] if weights is not None and scale(1) == 1: diff *= weights return numpy.asarray(diff).ravel() super().__init__(self.func, independent_vars='x', name=self.lmodel.__class__.__name__, **kwargs) self._residual = _residual # set default parameter hints self._default_hints() self.set_fit_limits()
[docs] def set_fit_limits(self, xmin=-numpy.inf, xmax=numpy.inf, mask=None): """ set fit limits. If mask is given it must have the same size as the `data` and `x` variables given to fit. If mask is None it will be generated from xmin and xmax. Parameters ---------- xmin : float, optional minimum value of x-values to include in the fit xmax : float, optional maximum value of x-values to include in the fit mask : boolean array, optional mask to be used for the data given to the fit """ self.mask = mask self.xmin = xmin self.xmax = xmax
[docs] def fit(self, data, params, x, weights=None, fit_kws=None, lmfit_kws=None, **kwargs): """ wrapper around lmfit.Model.fit which enables plotting during the fitting Parameters ---------- data : ndarray experimental values params : lmfit.Parameters list of parameters for the fit, use make_params for generation x : ndarray independent variable (incidence angle or q-position depending on the model) weights : ndarray, optional values of weights for the fit, same size as data fit_kws : dict, optional Options to pass to the minimizer being used lmfit_kws : dict, optional keyword arguments which are passed to lmfit.Model.fit kwargs : dict, optional keyword arguments passed to lmfit.Model.eval Returns ------- lmfit.ModelResult """ if not lmfit_kws: lmfit_kws = {} class FitPlot: def __init__(self, figname, logscale): self.figname = figname self.logscale = logscale if not self.figname: self.plot = False else: f, plt = utilities.import_matplotlib_pyplot('XU.simpack') self.plt = plt self.plot = f def plot_init(self, x, data, weights, model, mask, verbose): if not self.plot: return self.plt.ion() if isinstance(self.figname, str): self.fig = self.plt.figure(self.figname) else: self.fig = self.plt.figure('XU:FitModel') self.plt.clf() self.ax = self.plt.subplot(111) if weights is not None: eline = self.ax.errorbar( x, data, yerr=1/weights, ecolor='0.3', fmt='ok', errorevery=int(x.size/80), label='data')[0] else: eline, = self.ax.plot(x, data, 'ok', label='data') if verbose: self.ax.plot(x, model, '-', color='0.5', label='initial') if eline: self.zord = eline.zorder+2 else: self.zord = 1 if self.logscale: self.ax.set_yscale("log") self.fline = None def showplot(self, xlab, ylab='Intensity (arb. u.)'): if not self.plot: return self.plt.xlabel(xlab) self.plt.ylabel(ylab) self.plt.legend() self.fig.set_tight_layout(True) self.plt.show() def updatemodelline(self, x, newmodel): if not self.plot: return try: self.plt.sca(self.ax) except ValueError: return if self.fline is None: self.fline, = self.ax.plot( x, newmodel, '-r', lw=2, label='fit', zorder=self.zord) else: self.fline.set_data(x, newmodel) canvas = self.fig.canvas # see plt.draw function (avoid show!) canvas.draw_idle() canvas.start_event_loop(0.001) def addfullmodelline(self, x, y): if not self.plot: return self.ax.plot(x, y, '-g', lw=1, label='full model', zorder=self.zord-1) if self.mask: mask = self.mask else: mask = numpy.logical_and(x >= self.xmin, x <= self.xmax) mweights = weights if mweights is not None: mweights = weights[mask] # create initial plot self.fitplot = FitPlot(self.plot, self.elog) initmodel = self.eval(params, x=x, **kwargs) self.fitplot.plot_init(x, data, weights, initmodel, mask, self.verbose) self.fitplot.showplot(xlab=self.lmodel.xlabelstr) # create callback function def cb_func(params, niter, resid, *args, **kwargs): if self.verbose: print(f'{niter:04d} {numpy.sum(resid ** 2):12.3e}') if self.fitplot.plot and niter % 20 == 0: self.fitplot.updatemodelline(kwargs['x'], self.eval(params, **kwargs)) # perform fitting lmfit_kws.update(kwargs) # add kwargs for function call res = super().fit(data[mask], params, x=x[mask], weights=mweights, fit_kws=fit_kws, iter_cb=cb_func, **lmfit_kws) # final update of plot if self.fitplot.plot: try: self.fitplot.plt.sca(self.fitplot.ax) except ValueError: self.fitplot.plot_init(x, data, weights, initmodel, mask, self.verbose) fittedmodel = self.eval(res.params, x=x, **kwargs) self.fitplot.addfullmodelline(x, fittedmodel) self.fitplot.updatemodelline(x[mask], fittedmodel[mask]) self.fitplot.showplot(xlab=self.lmodel.xlabelstr) return res
def _default_hints(self): """ set useful hints for parameters all LayerModels have """ # general parameters for pn in self.lmodel.fit_paramnames: self.set_param_hint(pn, value=getattr(self.lmodel, pn), vary=False) for pn in ('I0', 'background'): self.set_param_hint(pn, vary=True, min=0) self.set_param_hint('resolution_width', min=0, vary=False) self.set_param_hint('energy', min=1000, vary=False) # parameters of the layerstack for lay in self.lmodel.lstack: for param in self.lmodel.lstack_params: varname = f'{lay.name}_{param}' self.set_param_hint(varname, value=getattr(lay, param), min=0) if param == 'density': self.set_param_hint(varname, max=1.5*lay.material.density) if param == 'thickness': self.set_param_hint(varname, max=2*lay.thickness) if param == 'roughness': self.set_param_hint(varname, max=50) if self.lmodel.lstack_structural_params: for param in lay._structural_params: varname = f'{lay.name}_{param}' self.set_param_hint(varname, value=getattr(lay, param), vary=False) if 'occupation' in param: self.set_param_hint(varname, min=0, max=1) if 'biso' in param: self.set_param_hint(varname, min=0, max=5) if self.lmodel.lstack[0].thickness == numpy.inf: varname = f"{self.lmodel.lstack[0].name}_thickness" self.set_param_hint(varname, vary=False)