Source code for xrayutilities.math.transforms

# This file is part of xrayutilities.
#
# xrayutilities is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>.
#
# Copyright (C) 2009 Eugen Wintersberger <eugen.wintersberger@desy.de>
# Copyright (c) 2009-2023 Dominik Kriegner <dominik.kriegner@gmail.com>

import math
import re

import numpy

from .. import config
from ..exception import InputError

circleSyntax = re.compile("[xyzk][+-]")


def _checkvec(v):
    if isinstance(v, (list, tuple, numpy.ndarray)):
        vtmp = numpy.asarray(v, dtype=numpy.double)
    else:
        raise TypeError("Vector must be a list, tuple or numpy array")
    return vtmp


[docs] def VecNorm(v): """ Calculate the norm of a vector. Parameters ---------- v : list or array-like input vector(s), either one vector or an array of vectors with shape (n, 3) Returns ------- float or ndarray vector norm, either a single float or shape (n, ) """ if isinstance(v, numpy.ndarray): if len(v.shape) >= 2: return numpy.linalg.norm(v, axis=-1) if len(v) != 3: raise ValueError( f"Vector must be of length 3, but has length {len(v)}!") return math.sqrt(v[0]**2 + v[1]**2 + v[2]**2)
[docs] def VecUnit(v): """ Calculate the unit vector of v. Parameters ---------- v : list or array-like input vector(s), either one vector or an array of vectors with shape (n, 3) Returns ------- ndarray unit vector of `v`, either shape (3, ) or (n, 3) """ vtmp = _checkvec(v) if len(vtmp.shape) == 1: return vtmp / VecNorm(vtmp) return vtmp / VecNorm(vtmp)[..., numpy.newaxis]
[docs] def VecDot(v1, v2): """ Calculate the vector dot product. Parameters ---------- v1, v2 : list or array-like input vector(s), either one vector or an array of vectors with shape (n, 3) Returns ------- float or ndarray innter product of the vectors, either a single float or (n, ) """ if isinstance(v1, numpy.ndarray): if len(v1.shape) >= 2: return numpy.einsum('...i, ...i', v1, v2) if len(v1) != 3 or len(v2) != 3: raise ValueError("Vectors must be of size 3! (len(v1)=%d len(v2)=%d)" % (len(v1), len(v2))) return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]
[docs] def VecCross(v1, v2, out=None): """ Calculate the vector cross product. Parameters ---------- v1, v2 : list or array-like input vector(s), either one vector or an array of vectors with shape (n, 3) out : list or array-like, optional output vector Returns ------- ndarray cross product either of shape (3, ) or (n, 3) """ if isinstance(v1, numpy.ndarray): if len(v1.shape) >= 2 or len(v2.shape) >= 2: return numpy.cross(v1, v2) if len(v1) != 3 or len(v2) != 3: raise ValueError("Vectors must be of size 3! (len(v1)=%d len(v2)=%d)" % (len(v1), len(v2))) if out is None: out = numpy.empty(3) out[0] = v1[1] * v2[2] - v1[2] * v2[1] out[1] = v1[2] * v2[0] - v1[0] * v2[2] out[2] = v1[0] * v2[1] - v1[1] * v2[0] return out
[docs] def VecAngle(v1, v2, deg=False): """ calculate the angle between two vectors. The following formula is used v1.v2 = norm(v1)*norm(v2)*cos(alpha) alpha = acos((v1.v2)/(norm(v1)*norm(v2))) Parameters ---------- v1, v2 : list or array-like input vector(s), either one vector or an array of vectors with shape (n, 3) deg: bool, optional True: return result in degree, False: in radiants (default: False) Returns ------- float or ndarray the angle included by the two vectors `v1` and `v2`, either a single float or an array with shape (n, ) """ u1 = VecNorm(v1) u2 = VecNorm(v2) if isinstance(u1, numpy.ndarray) or isinstance(u2, numpy.ndarray): s = VecDot(v1, v2) / u1 / u2 s[numpy.abs(s) > 1.0] = numpy.sign(s[numpy.abs(s) > 1.0]) * 1.0 alpha = numpy.arccos(s) if deg: alpha = numpy.degrees(alpha) else: alpha = math.acos(max(min(1., VecDot(v1, v2) / u1 / u2), -1.)) if deg: alpha = math.degrees(alpha) return alpha
[docs] def distance(x, y, z, point, vec): """ calculate the distance between the point (x, y, z) and the line defined by the point and vector vec Parameters ---------- x : float or ndarray x coordinate(s) of the point(s) y : float or ndarray y coordinate(s) of the point(s) z : float or ndarray z coordinate(s) of the point(s) point : tuple, list or ndarray 3D point on the line to which the distance should be calculated vec : tuple, list or ndarray 3D vector defining the propergation direction of the line """ coords = numpy.vstack((numpy.ravel(x) - point[0], numpy.ravel(y) - point[1], numpy.ravel(z) - point[2])).T ret = VecNorm(VecCross(coords, numpy.asarray(vec)))/VecNorm(vec) if isinstance(x, numpy.ndarray): ret = ret.reshape(x.shape) else: ret = ret[0] return ret
[docs] def getVector(string): """ returns unit vector along a rotation axis given in the syntax 'x+' 'z-' or equivalents Parameters ---------- string: str vector string following the synthax [xyz][+-] Returns ------- ndarray vector along the given direction """ if len(string) != 2: raise InputError("wrong length of string for conversion given") if not circleSyntax.search(string): raise InputError(f"getVector: incorrect string syntax ({string})") if string[0] == 'x': v = [1., 0, 0] elif string[0] == 'y': v = [0, 1., 0] elif string[0] == 'z': v = [0, 0, 1.] elif string[0] == 'k': # determine reference direction if config.KAPPA_PLANE[0] == 'x': v = numpy.array((1., 0, 0)) # turn reference direction if config.KAPPA_PLANE[1] == 'y': v = ZRotation(config.KAPPA_ANGLE)(v) elif config.KAPPA_PLANE[1] == 'z': v = YRotation(-1 * config.KAPPA_ANGLE)(v) else: raise TypeError("getVector: invalid kappa_plane in config!") elif config.KAPPA_PLANE[0] == 'y': v = numpy.array((0, 1., 0)) # turn reference direction if config.KAPPA_PLANE[1] == 'z': v = XRotation(config.KAPPA_ANGLE)(v) elif config.KAPPA_PLANE[1] == 'x': v = ZRotation(-1 * config.KAPPA_ANGLE)(v) else: raise TypeError("getVector: invalid kappa_plane in config!") elif config.KAPPA_PLANE[0] == 'z': v = numpy.array((0, 0, 1.)) # turn reference direction if config.KAPPA_PLANE[1] == 'x': v = YRotation(config.KAPPA_ANGLE)(v) elif config.KAPPA_PLANE[1] == 'y': v = XRotation(-1 * config.KAPPA_ANGLE)(v) else: raise TypeError("getVector: invalid kappa_plane in config!") else: raise TypeError("getVector: invalid kappa_plane in config!") else: raise InputError("wrong first character of string given " "(needs to be one of x, y, z, or k)") if string[1] == '+': v = numpy.asarray(v) * (+1) elif string[1] == '-': v = numpy.asarray(v) * (-1) else: raise InputError("wrong second character of string given " "(needs to be + or -)") return v
[docs] def getSyntax(vec): """ returns vector direction in the syntax 'x+' 'z-' or equivalents therefore works only for principle vectors of the coordinate system like e.g. [1, 0, 0] or [0, 2, 0] Parameters ---------- vec : list or array-like vector of length 3 Returns ------- str vector string following the synthax [xyz][+-] """ v = _checkvec(vec) if len(v) != 3: raise InputError("no valid 3D vector given") x = [1, 0, 0] y = [0, 1, 0] z = [0, 0, 1] if numpy.isclose(VecNorm(numpy.cross(numpy.cross(x, y), v)), 0): if v[2] >= 0: string = 'z+' else: string = 'z-' elif numpy.isclose(VecNorm(numpy.cross(numpy.cross(x, z), v)), 0): if v[1] >= 0: string = 'y+' else: string = 'y-' elif numpy.isclose(VecNorm(numpy.cross(numpy.cross(y, z), v)), 0): if v[0] >= 0: string = 'x+' else: string = 'x-' else: raise InputError("no valid 3D vector given") return string
[docs] class Transform:
[docs] def __init__(self, matrix): self.matrix = matrix self._imatrix = None
@property def imatrix(self): if self._imatrix is None: try: self._imatrix = numpy.linalg.inv(self.matrix) except numpy.linalg.LinAlgError: raise Exception("XU.math.Transform: matrix cannot be inverted" " - seems to be singular") return self._imatrix
[docs] def inverse(self, args, rank=1): """ performs inverse transformation a vector, matrix or tensor of rank 4 Parameters ---------- args : list or array-like object to transform, list or numpy array of shape (..., n) (..., n, n), (..., n, n, n, n) where n is the size of the transformation matrix. rank : int rank of the supplied object. allowed values are 1, 2, and 4 """ it = Transform(self.imatrix) return it(args, rank)
[docs] def __call__(self, args, rank=1): """ transforms a vector, matrix or tensor of rank 4 (e.g. elasticity tensor) Parameters ---------- args : list or array-like object to transform, list or numpy array of shape (..., n) (..., n, n), (..., n, n, n, n) where n is the size of the transformation matrix. rank : int rank of the supplied object. allowed values are 1, 2, and 4 """ m = self.matrix if rank == 1: # argument is a vector # out_i = m_ij * args_j out = numpy.einsum('ij,...j', m, args) elif rank == 2: # argument is a matrix # out_ij = m_ik * m_jl * args_kl out = numpy.einsum('ik, jl,...kl', m, m, args) elif rank == 4: # cp_ijkl = m_in * m_jo * m_kp * m_lq * args_nopq out = numpy.einsum('in, jo, kp, lq,...nopq', m, m, m, m, args) else: raise ValueError("rank must be either 1, 2, or 4") return out
def __str__(self): ostr = "Transformation matrix:\n" ostr += str(self.matrix) return ostr
[docs] class CoordinateTransform(Transform): """ Create a Transformation object which transforms a point into a new coordinate frame. The new frame is determined by the three vectors v1/norm(v1), v2/norm(v2) and v3/norm(v3), which need to be orthogonal! """
[docs] def __init__(self, v1, v2, v3): """ initialization routine for Coordinate transformation Parameters ---------- v1, v2, v3 : list, tuple or array-like new base vectors Returns ------- Transform An instance of a Transform class """ e1 = _checkvec(v1) e2 = _checkvec(v2) e3 = _checkvec(v3) # normalize base vectors e1 = e1 / numpy.linalg.norm(e1) e2 = e2 / numpy.linalg.norm(e2) e3 = e3 / numpy.linalg.norm(e3) # check that the vectors are orthogonal t1 = numpy.abs(numpy.dot(e1, e2)) t2 = numpy.abs(numpy.dot(e1, e3)) t3 = numpy.abs(numpy.dot(e2, e3)) if not numpy.allclose((t1, t2, t3), 0): raise ValueError("given basis vectors need to be orthogonal!") if config.VERBOSITY >= config.INFO_ALL: print("XU.math.CoordinateTransform: new basis set: \n" " x: (%5.2f %5.2f %5.2f) \n" " y: (%5.2f %5.2f %5.2f) \n" " z: (%5.2f %5.2f %5.2f)" % (e1[0], e1[1], e1[2], e2[0], e2[1], e2[2], e3[0], e3[1], e3[2])) # assemble the transformation matrix m = numpy.array([e1, e2, e3]) Transform.__init__(self, m)
[docs] class AxisToZ(CoordinateTransform): """ Creates a coordinate transformation to move a certain axis to the z-axis. The rotation is done along the great circle. The x-axis of the new coordinate frame is created to be normal to the new and original z-axis. The new y-axis is create in order to obtain a right handed coordinate system. """
[docs] def __init__(self, newzaxis): """ initialize the CoordinateTransformation to move a certain axis to the z-axis Parameters ---------- newzaxis : list or array-like new z-axis """ newz = _checkvec(newzaxis) if numpy.isclose(VecAngle([0, 0, 1], newz), 0): newx = [1, 0, 0] newy = [0, 1, 0] newz = [0, 0, 1] elif numpy.isclose(VecAngle([0, 0, 1], -newz), 0): newx = [-1, 0, 0] newy = [0, 1, 0] newz = [0, 0, -1] else: newx = numpy.cross(newz, [0, 0, 1]) newy = numpy.cross(newz, newx) CoordinateTransform.__init__(self, newx, newy, newz)
[docs] class AxisToZ_keepXY(CoordinateTransform): """ Creates a coordinate transformation to move a certain axis to the z-axis. The rotation is done along the great circle. The x-axis/y-axis of the new coordinate frame is created to be similar to the old x and y directions. This variant of AxisToZ assumes that the new Z-axis has its main component along the Z-direction """
[docs] def __init__(self, newzaxis): """ initialize the CoordinateTransformation to move a certain axis to the z-axis Parameters ---------- newzaxis : list or array-like new z-axis """ newz = _checkvec(newzaxis) if numpy.isclose(VecAngle([0, 0, 1], newz), 0): newx = [1, 0, 0] newy = [0, 1, 0] newz = [0, 0, 1] elif numpy.isclose(VecAngle([0, 0, 1], -newz), 0): newx = [-1, 0, 0] newy = [0, 1, 0] newz = [0, 0, -1] else: newx = numpy.cross(newz, [0, 0, 1]) newy = numpy.cross(newz, newx) # rotate newx and newy to be similar to old directions ang = numpy.degrees(numpy.arctan2(newz[0], newz[1])) newx = rotarb(newx, newz, ang) newy = rotarb(newy, newz, ang) CoordinateTransform.__init__(self, newx, newy, newz)
def _sincos(alpha, deg): if deg: a = numpy.radians(alpha) else: a = alpha return numpy.sin(a), numpy.cos(a)
[docs] def XRotation(alpha, deg=True): """ Returns a transform that represents a rotation about the x-axis by an angle alpha. If deg=True the angle is assumed to be in degree, otherwise the function expects radiants. """ sina, cosa = _sincos(alpha, deg) m = numpy.array( [[1, 0, 0], [0, cosa, -sina], [0, sina, cosa]], dtype=numpy.double) return Transform(m)
[docs] def YRotation(alpha, deg=True): """ Returns a transform that represents a rotation about the y-axis by an angle alpha. If deg=True the angle is assumed to be in degree, otherwise the function expects radiants. """ sina, cosa = _sincos(alpha, deg) m = numpy.array( [[cosa, 0, sina], [0, 1, 0], [-sina, 0, cosa]], dtype=numpy.double) return Transform(m)
[docs] def ZRotation(alpha, deg=True): """ Returns a transform that represents a rotation about the z-axis by an angle alpha. If deg=True the angle is assumed to be in degree, otherwise the function expects radiants. """ sina, cosa = _sincos(alpha, deg) m = numpy.array( [[cosa, -sina, 0], [sina, cosa, 0], [0, 0, 1]], dtype=numpy.double) return Transform(m)
# helper scripts for rotations around arbitrary axis
[docs] def tensorprod(vec1, vec2): """ function implements an elementwise multiplication of two vectors """ return vec1[:, numpy.newaxis] * numpy.ones((3, 3)) * vec2[numpy.newaxis, :]
[docs] def mycross(vec, mat): """ function implements the cross-product of a vector with each column of a matrix """ out = numpy.zeros((3, 3)) for i in range(3): out[:, i] = numpy.cross(vec, mat[:, i]) return out
[docs] def ArbRotation(axis, alpha, deg=True): """ Returns a transform that represents a rotation around an arbitrary axis by the angle alpha. positive rotation is anti-clockwise when looking from positive end of axis vector Parameters ---------- axis : list or array-like rotation axis alpha : float rotation angle in degree (deg=True) or in rad (deg=False) deg : bool determines the input format of ang (default: True) Returns ------- Transform """ axis = _checkvec(axis) e = axis / numpy.linalg.norm(axis) if deg: rad = numpy.radians(alpha) else: rad = alpha get = tensorprod(e, e) rot = get + numpy.cos(rad) * (numpy.identity(3) - get) + \ numpy.sin(rad) * mycross(e, numpy.identity(3)) return Transform(rot)
[docs] def rotarb(vec, axis, ang, deg=True): """ function implements the rotation around an arbitrary axis by an angle ang positive rotation is anti-clockwise when looking from positive end of axis vector Parameters ---------- vec : list or array-like vector to rotate axis : list or array-like rotation axis ang : float rotation angle in degree (deg=True) or in rad (deg=False) deg : bool determines the input format of ang (default: True) Returns ------- rotvec : rotated vector as numpy.array Examples -------- >>> rotarb([1, 0, 0], [0, 0, 1], 90) array([6.123234e-17, 1.000000e+00, 0.000000e+00]) """ return ArbRotation(axis, ang, deg)(vec)