Source code for xrayutilities.math.functions

# This file is part of xrayutilities.
#
# xrayutilities is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>.
#
# Copyright (c) 2012-2021, 2023 Dominik Kriegner <dominik.kriegner@gmail.com>

"""
module with several common function needed in xray data analysis
"""

import copy
import numbers

import numpy
import scipy.integrate

from .. import config


[docs] def smooth(x, n): """ function to smooth an array of data by averaging N adjacent data points Parameters ---------- x : array-like 1D data array n : int number of data points to average Returns ------- xsmooth: array-like smoothed array with same length as x """ if x.ndim != 1: raise ValueError("smooth only accepts 1 dimension arrays.") if x.size < n: raise ValueError("Input vector needs to be bigger than n.") if n < 2: return x # avoid boundary effects by adding mirrored signal at the boundaries s = numpy.r_[x[n - 1:0:-1], x, x[-1:-n - 1:-1]] w = numpy.ones(n, 'd') y = numpy.convolve(w / w.sum(), s, mode='same') return y[n:-n + 1]
[docs] def kill_spike(data, threshold=2., offset=None): """ function to smooth **single** data points which differ from the average of the neighboring data points by more than the threshold factor or more than the offset value. Such spikes will be replaced by the mean value of the next neighbors. .. warning:: Use this function carefully not to manipulate your data! Parameters ---------- data : array-like 1d numpy array with experimental data threshold : float or None threshold factor to identify outlier data points. If None it will be ignored. offset : None or float offset value to identify outlier data points. If None it will be ignored. Returns ------- array-like 1d data-array with spikes removed """ dataout = data.copy() mean = (data[:-2] + data[2:]) / 2. mask = numpy.zeros_like(data[1:-1], dtype=bool) if threshold: mask = numpy.logical_or( mask, numpy.logical_or(data[1:-1] * threshold < mean, data[1:-1] / threshold > mean)) if offset: mask = numpy.logical_or( mask, numpy.logical_or(data[1:-1] + offset < mean, data[1:-1] - offset > mean)) # ensure that only single value are corrected and neighboring are ignored for i in range(1, len(mask) - 1): if mask[i - 1] and mask[i] and mask[i + 1]: mask[i - 1] = False mask[i + 1] = False dataout[1:-1][mask] = mean[mask] return dataout
[docs] def Gauss1d(x, *p): """ function to calculate a general one dimensional Gaussian Parameters ---------- x : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the Gaussian [XCEN, SIGMA, AMP, BACKGROUND] for information: SIGMA = FWHM / (2*sqrt(2*log(2))) Returns ------- array-like the value of the Gaussian described by the parameters p at position x Examples -------- Calling with a list of parameters needs a call looking as shown below (note the '*') or explicit listing of the parameters >>> Gauss1d(x, *p) # doctest: +SKIP >>> import numpy >>> Gauss1d(numpy.linspace(0, 10, 10), 5, 1, 1e3, 0) array([3.72665317e-03, 5.19975743e-01, 2.11096565e+01, 2.49352209e+02, 8.56996891e+02, 8.56996891e+02, 2.49352209e+02, 2.11096565e+01, 5.19975743e-01, 3.72665317e-03]) """ g = p[3] + p[2] * numpy.exp(-((p[0] - x) / p[1]) ** 2 / 2.) return g
[docs] def NormGauss1d(x, *p): """ function to calculate a normalized one dimensional Gaussian Parameters ---------- x : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the Gaussian [XCEN, SIGMA]; for information: SIGMA = FWHM / (2*sqrt(2*log(2))) Returns ------- array-like the value of the normalized Gaussian described by the parameters p at position x """ g = numpy.exp(-((p[0] - x) / p[1]) ** 2 / 2.) a = numpy.sqrt(2 * numpy.pi) * p[1] return g / a
[docs] def Gauss1d_der_x(x, *p): """ function to calculate the derivative of a Gaussian with respect to x for parameter description see Gauss1d """ lp = numpy.copy(p) lp[3] = 0 return (p[0] - x) / p[1]**2 * Gauss1d(x, *lp)
[docs] def Gauss1d_der_p(x, *p): """ function to calculate the derivative of a Gaussian with respect the parameters p for parameter description see Gauss1d """ lp = numpy.copy(p) lp[3] = 0 r = numpy.vstack((- (p[0] - x) / p[1]**2 * Gauss1d(x, *lp), (p[0] - x) ** 2 / (p[1] ** 3) * Gauss1d(x, *lp), Gauss1d(x, *lp) / p[2], numpy.ones(x.shape, dtype=float))) return r
[docs] def Gauss2d(x, y, *p): """ function to calculate a general two dimensional Gaussian Parameters ---------- x, y : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the Gauss-function [XCEN, YCEN, SIGMAX, SIGMAY, AMP, BACKGROUND, ANGLE]; SIGMA = FWHM / (2*sqrt(2*log(2))); ANGLE = rotation of the X, Y direction of the Gaussian in radians Returns ------- array-like the value of the Gaussian described by the parameters p at position (x, y) """ rcen_x = p[0] * numpy.cos(p[6]) - p[1] * numpy.sin(p[6]) rcen_y = p[0] * numpy.sin(p[6]) + p[1] * numpy.cos(p[6]) xp = x * numpy.cos(p[6]) - y * numpy.sin(p[6]) yp = x * numpy.sin(p[6]) + y * numpy.cos(p[6]) g = p[5] + p[4] * numpy.exp(-(((rcen_x - xp) / p[2]) ** 2 + ((rcen_y - yp) / p[3]) ** 2) / 2.) return g
[docs] def Gauss3d(x, y, z, *p): """ function to calculate a general three dimensional Gaussian Parameters ---------- x, y, z : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the Gauss-function [XCEN, YCEN, ZCEN, SIGMAX, SIGMAY, SIGMAZ, AMP, BACKGROUND]; SIGMA = FWHM / (2*sqrt(2*log(2))) Returns ------- array-like the value of the Gaussian described by the parameters p at positions (x, y, z) """ g = p[7] + p[6] * numpy.exp(-(((x - p[0]) / p[3]) ** 2 + ((y - p[1]) / p[4]) ** 2 + ((z - p[2]) / p[5]) ** 2) / 2.) return g
[docs] def TwoGauss2d(x, y, *p): """ function to calculate two general two dimensional Gaussians Parameters ---------- x, y : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the Gauss-function [XCEN1, YCEN1, SIGMAX1, SIGMAY1, AMP1, ANGLE1, XCEN2, YCEN2, SIGMAX2, SIGMAY2, AMP2, ANGLE2, BACKGROUND]; SIGMA = FWHM / (2*sqrt(2*log(2))) ANGLE = rotation of the X, Y direction of the Gaussian in radians Returns ------- array-like the value of the Gaussian described by the parameters p at position (x, y) """ p = list(p) p1 = p[0:5] + [p[12], ] + [p[5], ] p2 = p[6:11] + [p[12], ] + [p[11], ] g = Gauss2d(x, y, *p1) + Gauss2d(x, y, *p2) return g
[docs] def Lorentz1d(x, *p): """ function to calculate a general one dimensional Lorentzian Parameters ---------- x : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the Lorentz-function [XCEN, FWHM, AMP, BACKGROUND] Returns ------- array-like the value of the Lorentian described by the parameters p at position (x, y) """ g = p[3] + p[2] / (1 + (2 * (x - p[0]) / p[1]) ** 2) return g
[docs] def Lorentz1d_der_x(x, *p): """ function to calculate the derivative of a Gaussian with respect to x for parameter description see Lorentz1d """ return 8 * (p[0]-x) / p[1]**2 * p[2] / (1 + (2 * (x-p[0]) / p[1]) ** 2)**2
[docs] def Lorentz1d_der_p(x, *p): """ function to calculate the derivative of a Gaussian with respect the parameters p for parameter description see Lorentz1d """ r = numpy.vstack(( 8 * (x-p[0]) * p[2] / p[1]**2 / (1 + (2 * (x-p[0]) / p[1]) ** 2) ** 2, 8 * p[2] * p[1] * (x-p[0])**2 / (4*p[0]**2 - 8*p[0]*x + p[1]**2 + 4*x**2) ** 2, 1 / (1 + (2 * (x - p[0]) / p[1]) ** 2), numpy.ones(x.shape, dtype=float))) return r
[docs] def NormLorentz1d(x, *p): """ function to calculate a normalized one dimensional Lorentzian Parameters ---------- x : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the Lorentzian [XCEN, FWHM] Returns ------- array-like the value of the normalized Lorentzian described by the parameters p at position x """ g = 1.0 / (1 + (2 * (x - p[0]) / p[1]) ** 2) a = numpy.pi / (2. / (p[1])) return g / a
[docs] def Lorentz2d(x, y, *p): """ function to calculate a general two dimensional Lorentzian Parameters ---------- x, y : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the Lorentz-function [XCEN, YCEN, FWHMX, FWHMY, AMP, BACKGROUND, ANGLE]; ANGLE = rotation of the X, Y direction of the Lorentzian in radians Returns ------- array-like the value of the Lorentian described by the parameters p at position (x, y) """ rcen_x = p[0] * numpy.cos(p[6]) - p[1] * numpy.sin(p[6]) rcen_y = p[0] * numpy.sin(p[6]) + p[1] * numpy.cos(p[6]) xp = x * numpy.cos(p[6]) - y * numpy.sin(p[6]) yp = x * numpy.sin(p[6]) + y * numpy.cos(p[6]) g = p[5] + p[4] / (1 + (2 * (rcen_x - xp) / p[2]) ** 2 + (2 * (rcen_y - yp) / p[3]) ** 2) return g
[docs] def PseudoVoigt1d(x, *p): """ function to calculate a pseudo Voigt function as linear combination of a Gauss and Lorentz peak Parameters ---------- x : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the pseudo Voigt-function [XCEN, FWHM, AMP, BACKGROUND, ETA]; ETA: 0 ...1 0 means pure Gauss and 1 means pure Lorentz Returns ------- array-like the value of the PseudoVoigt described by the parameters p at position `x` """ if p[4] > 1.0: pv = 1.0 elif p[4] < 0.: pv = 0.0 else: pv = p[4] sigma = p[1] / (2 * numpy.sqrt(2 * numpy.log(2))) f = p[3] + pv * Lorentz1d(x, p[0], p[1], p[2], 0) + \ (1 - pv) * Gauss1d(x, p[0], sigma, p[2], 0) return f
[docs] def PseudoVoigt1d_der_x(x, *p): """ function to calculate the derivative of a PseudoVoigt with respect to `x` for parameter description see PseudoVoigt1d """ if p[4] > 1.0: pv = 1.0 elif p[4] < 0.: pv = 0.0 else: pv = p[4] sigma = p[1] / (2 * numpy.sqrt(2 * numpy.log(2))) rl = Lorentz1d_der_x(x, p[0], p[1], p[2], 0) rg = Gauss1d_der_x(x, p[0], sigma, p[2], 0) return pv * rl + (1 - pv) * rg
[docs] def PseudoVoigt1d_der_p(x, *p): """ function to calculate the derivative of a PseudoVoigt with respect the parameters `p` for parameter description see PseudoVoigt1d """ if p[4] > 1.0: pv = 1.0 elif p[4] < 0.: pv = 0.0 else: pv = p[4] sigma = p[1] / (2 * numpy.sqrt(2 * numpy.log(2))) lpl = [p[0], p[1], p[2], 0] lpg = [p[0], sigma, p[2], 0] rl = Lorentz1d_der_p(x, *lpl) rg = Gauss1d_der_p(x, *lpg) rg[1] /= (2 * numpy.sqrt(2 * numpy.log(2))) r = pv * rl + (1 - pv) * rg return numpy.vstack((r, Lorentz1d(x, *lpl) - Gauss1d(x, *lpg)))
[docs] def PseudoVoigt1dasym(x, *p): """ function to calculate an asymmetric pseudo Voigt function as linear combination of asymmetric Gauss and Lorentz peak Parameters ---------- x : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the pseudo Voigt-function [XCEN, FWHMLEFT, FWHMRIGHT, AMP, BACKGROUND, ETA]; ETA: 0 ...1 0 means pure Gauss and 1 means pure Lorentz Returns ------- array-like the value of the PseudoVoigt described by the parameters p at position `x` """ lp = copy.copy(list(p)) lp.insert(6, p[5]) return PseudoVoigt1dasym2(x, *lp)
[docs] def PseudoVoigt1dasym2(x, *p): """ function to calculate an asymmetric pseudo Voigt function as linear combination of asymmetric Gauss and Lorentz peak Parameters ---------- x : naddray coordinate(s) where the function should be evaluated p : list list of parameters of the pseudo Voigt-function [XCEN, FWHMLEFT, FWHMRIGHT, AMP, BACKGROUND, ETALEFT, ETARIGHT]; ETA: 0 ...1 0 means pure Gauss and 1 means pure Lorentz Returns ------- array-like the value of the PseudoVoigt described by the parameters p at position `x` """ pvl = p[5] if p[5] < 1.0 else 1.0 pvl = pvl if p[5] > 0.0 else 0.0 pvr = p[6] if p[6] < 1.0 else 1.0 pvr = pvr if p[6] > 0.0 else 0.0 sigmal = p[1] / (2 * numpy.sqrt(2 * numpy.log(2))) sigmar = p[2] / (2 * numpy.sqrt(2 * numpy.log(2))) if isinstance(x, numbers.Number): if x < p[0]: f = p[4] + pvl * Lorentz1d(x, p[0], p[1], p[3], 0) + \ (1 - pvl) * Gauss1d(x, p[0], sigmal, p[3], 0) else: f = p[4] + pvr * Lorentz1d(x, p[0], p[2], p[3], 0) + \ (1 - pvr) * Gauss1d(x, p[0], sigmar, p[3], 0) else: lx = numpy.asarray(x) f = numpy.zeros(lx.shape) f[lx < p[0]] = (p[4] + pvl * Lorentz1d(lx[x < p[0]], p[0], p[1], p[3], 0) + (1 - pvl) * Gauss1d(lx[x < p[0]], p[0], sigmal, p[3], 0)) f[lx >= p[0]] = (p[4] + pvr * Lorentz1d(lx[x >= p[0]], p[0], p[2], p[3], 0) + (1 - pvr) * Gauss1d(lx[x >= p[0]], p[0], sigmar, p[3], 0)) return f
[docs] def PseudoVoigt2d(x, y, *p): """ function to calculate a pseudo Voigt function as linear combination of a Gauss and Lorentz peak in two dimensions Parameters ---------- x, y : array-like coordinate(s) where the function should be evaluated p : list list of parameters of the pseudo Voigt-function [XCEN, YCEN, FWHMX, FWHMY, AMP, BACKGROUND, ANGLE, ETA]; ETA: 0 ...1 0 means pure Gauss and 1 means pure Lorentz Returns ------- array-like the value of the PseudoVoigt described by the parameters `p` at position `(x, y)` """ if p[7] > 1.0: pv = 1.0 elif p[7] < 0.: pv = 0.0 else: pv = p[7] sigmax = p[2] / (2 * numpy.sqrt(2 * numpy.log(2))) sigmay = p[3] / (2 * numpy.sqrt(2 * numpy.log(2))) f = p[5] + pv * Lorentz2d(x, y, p[0], p[1], p[2], p[3], p[4], 0, p[6]) + \ (1 - pv) * Gauss2d(x, y, p[0], p[1], sigmax, sigmay, p[4], 0, p[6]) return f
[docs] def Gauss1dArea(*p): """ function to calculate the area of a Gauss function with neglected background Parameters ---------- p : list list of parameters of the Gauss-function [XCEN, SIGMA, AMP, BACKGROUND] Returns ------- float the area of the Gaussian described by the parameters `p` """ f = p[2] * numpy.sqrt(2 * numpy.pi) * p[1] return f
[docs] def Gauss2dArea(*p): """ function to calculate the area of a 2D Gauss function with neglected background Parameters ---------- p : list list of parameters of the Gauss-function [XCEN, YCEN, SIGMAX, SIGMAY, AMP, ANGLE, BACKGROUND] Returns ------- float the area of the Gaussian described by the parameters `p` """ f = p[4] * numpy.sqrt(2 * numpy.pi) ** 2 * p[2] * p[3] return f
[docs] def Lorentz1dArea(*p): """ function to calculate the area of a Lorentz function with neglected background Parameters ---------- p : list list of parameters of the Lorentz-function [XCEN, FWHM, AMP, BACKGROUND] Returns ------- float the area of the Lorentzian described by the parameters `p` """ f = p[2] * numpy.pi / (2. / (p[1])) return f
[docs] def PseudoVoigt1dArea(*p): """ function to calculate the area of a pseudo Voigt function with neglected background Parameters ---------- p : list list of parameters of the Lorentz-function [XCEN, FWHM, AMP, BACKGROUND, ETA]; ETA: 0 ...1 0 means pure Gauss and 1 means pure Lorentz Returns ------- float the area of the PseudoVoigt described by the parameters `p` """ sigma = p[1] / (2 * numpy.sqrt(2 * numpy.log(2))) f = p[4] * Lorentz1dArea(*p) + (1. - p[4]) * \ Gauss1dArea(p[0], sigma, p[2], p[3]) return f
[docs] def Debye1(x): r""" function to calculate the first Debye function [1]_ as needed for the calculation of the thermal Debye-Waller-factor by numerical integration .. math:: D_1(x) = (1/x) \int_0^x t/(\exp(t)-1) dt Parameters ---------- x : float argument of the Debye function Returns ------- float D1(x) float value of the Debye function References ---------- .. [1] http://en.wikipedia.org/wiki/Debye_function """ def __int_kernel(t): """ integration kernel for the numeric integration """ y = t / (numpy.exp(t) - 1) return y if x > 0.: integral = scipy.integrate.quad(__int_kernel, 0, x) d1 = (1 / float(x)) * integral[0] else: integral = (0, 0) d1 = 1. if config.VERBOSITY >= config.DEBUG: print( "XU.math.Debye1: Debye integral value/error estimate: %g %g" % (integral[0], integral[1])) return d1
[docs] def multPeak1d(x, *args): """ function to calculate the sum of multiple peaks in 1D. the peaks can be of different type and a background function (polynom) can also be included. Parameters ---------- x : array-like coordinate where the function should be evaluated args : list list of peak/function types and parameters for every function type two arguments need to be given first the type of function as string with possible values 'g': Gaussian, 'l': Lorentzian, 'v': PseudoVoigt, 'a': asym. PseudoVoigt, 'p': polynom the second type of arguments is the tuple/list of parameters of the respective function. See documentation of math.Gauss1d, math.Lorentz1d, math.PseudoVoigt1d, math.PseudoVoigt1dasym, and numpy.polyval for details of the different function types. Returns ------- array-like value of the sum of functions at position `x` """ if len(args) % 2 != 0: raise ValueError('number of arguments must be even!') if numpy.isscalar(x): f = 0 else: lx = numpy.array(x) f = numpy.zeros(lx.shape) for i in range(int(len(args) / 2)): ftype = str.lower(args[2 * i]) fparam = args[2 * i + 1] if ftype == 'g': f += Gauss1d(x, *fparam) elif ftype == 'l': f += Lorentz1d(x, *fparam) elif ftype == 'v': f += PseudoVoigt1d(x, *fparam) elif ftype == 'a': f += PseudoVoigt1dasym(x, *fparam) elif ftype == 'p': if isinstance(fparam, (tuple, list, numpy.ndarray)): f += numpy.polyval(fparam, x) else: f += numpy.polyval((fparam,), x) else: raise ValueError('invalid function type given!') return f
[docs] def multPeak2d(x, y, *args): """ function to calculate the sum of multiple peaks in 2D. the peaks can be of different type and a background function (polynom) can also be included. Parameters ---------- x, y : array-like coordinates where the function should be evaluated args : list list of peak/function types and parameters for every function type two arguments need to be given first the type of function as string with possible values 'g': Gaussian, 'l': Lorentzian, 'v': PseudoVoigt, 'c': constant the second type of arguments is the tuple/list of parameters of the respective function. See documentation of math.Gauss2d, math.Lorentz2d, math.PseudoVoigt2d for details of the different function types. The constant accepts a single float which will be added to the data Returns ------- array-like value of the sum of functions at position `(x, y)` """ if len(args) % 2 != 0: raise ValueError('number of arguments must be even!') lx = numpy.array(x) ly = numpy.array(y) if numpy.isscalar(x): f = 0 else: f = numpy.zeros(lx.shape) for i in range(int(len(args) / 2)): ftype = str.lower(args[2 * i]) fparam = args[2 * i + 1] if ftype == 'g': f += Gauss2d(lx, ly, *fparam) elif ftype == 'l': f += Lorentz2d(lx, ly, *fparam) elif ftype == 'v': f += PseudoVoigt2d(lx, ly, *fparam) elif ftype == 'c': f += fparam else: raise ValueError('invalid function type given!') return f
[docs] def heaviside(x): """ Heaviside step function for numpy arrays Parameters ---------- x: scalar or array-like argument of the step function Returns ------- int or array-like Heaviside step function evaluated for all values of `x` with datatype integer """ return (numpy.sign(x)/2. + 0.5).astype(numpy.int8)