Source code for xrayutilities.io.spectra

# This file is part of xrayutilities.
#
# xrayutilities is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>.
#
# Copyright (C) 2009-2010 Eugen Wintersberger <eugen.wintersberger@desy.de>
# Copyright (c) 2009-2019, 2023 Dominik Kriegner <dominik.kriegner@gmail.com>

"""
module to handle spectra data
"""

import glob
import re

import numpy
import numpy.lib.recfunctions
from numpy import rec

from .. import config
from .helper import xu_h5open

re_wspaces = re.compile(r"\s+")
re_colname = re.compile(r"^Col")

re_comment_section = re.compile(r"^%c")
re_parameter_section = re.compile(r"^%p")
re_data_section = re.compile(r"^%d")
re_end_section = re.compile(r"^!")
re_unit = re.compile(r"\[.+\]")
re_obracket = re.compile(r"\[")
re_cbracket = re.compile(r"\]")
re_underscore = re.compile(r"_")
re_column = re.compile(r"^Col")
re_col_name = re.compile(r"\d+\s+.+\s*\[")
re_col_index = re.compile(r"\d+\s+")
re_col_type = re.compile(r"\[.+\]")
re_num = re.compile(r"[0-9]")

dtype_map = {"FLOAT": "f4",
             "DOUBLE": "f8"}


[docs] class SPECTRAFileComments(dict): """ Class that describes the comments in the header of a SPECTRA file. The different comments are accessible via the comment keys. """
[docs] def __init__(self): pass
def __getattr__(self, name): if name in self: return self[name] raise KeyError(f"'{name}' not found in SPECTRA file comments")
[docs] class SPECTRAFileParameters(dict):
[docs] def __init__(self): pass
def __getattr__(self, name): if name in self: return self[name] raise KeyError(f"'{name}' not found in SPECTRA file parameters") def __str__(self): ostr = "" lmax_key = 0 lmax_item = 0 # find the length of the longest key for k in self: if len(k) > lmax_key: lmax_key = len(k) i = self[k] if not isinstance(i, str): # if the item is not a string it must be converted i = f"{i:f}" if len(i) > lmax_item: lmax_item = len(i) # define the format string for a single key-value pair kvfmt = "|%%-%is = %%-%is" % (lmax_key, lmax_item) cnt = 0 ostr += (3 * (lmax_key + lmax_item + 4) + 1) * "-" + "\n" ostr += "|Parameters:" + (3 * (lmax_key + lmax_item)) * " " + "|\n" ostr += (3 * (lmax_key + lmax_item + 4) + 1) * "-" + "\n" for key in self: value = self[key] if not isinstance(value, str): value = f"{value:f}" ostr += kvfmt % (key, value) cnt += 1 if cnt == 3: ostr += "|\n" cnt = 0 if cnt != 0: ostr += "|\n" ostr += (3 * (lmax_key + lmax_item + 4) + 1) * "-" + "\n" return ostr
[docs] class SPECTRAFileDataColumn:
[docs] def __init__(self, index, name, unit, type): self.index = int(index) self.name = name self.unit = unit self.type = type
def __str__(self): ostr = "%i %s %s %s" % (self.index, self.name, self.unit, self.type) return ostr
[docs] class SPECTRAFileData:
[docs] def __init__(self): self.collist = [] self.data = None
[docs] def append(self, col): self.collist.append(col)
def __getitem__(self, key): try: return self.data[key] except IndexError as exc: print("XU.io.specta.SPECTRAFileData: data contains no column " "named: %s!" % key) raise exc def __str__(self): ostr = "" # determine the maximum lenght of every column string lmax = 0 for c in self.collist: if len(c.__str__()) > lmax: lmax = len(c.__str__()) lmax += 3 # want to print in three columns nc = 3 nres = len(self.collist) % nc nrows = (len(self.collist) - nres) / nc fmtstr = f"| %-{lmax}s| %-{lmax}s| %-{lmax}s|\n" ostr += (3 * lmax + 7) * "-" + "\n" ostr += "|Column names:" + (3 * lmax - 8) * " " + "|\n" ostr += (3 * lmax + 7) * "-" + "\n" # full output rows for i in range(nrows): c1 = self.collist[i * nc + 0] c2 = self.collist[i * nc + 1] c3 = self.collist[i * nc + 2] ostr += fmtstr % (c1.__str__(), c2.__str__(), c3.__str__()) # residual output row c = ['', '', ''] for j in range(nres): c[j] = self.collist[-nres + j] ostr += fmtstr % (c[0].__str__(), c[1].__str__(), c[2].__str__()) ostr += (3 * lmax + 7) * "-" + "\n" return ostr
[docs] class SPECTRAFile: """ Represents a SPECTRA data file. The file is read during the Constructor call. This class should work for data stored at beamlines P08 and BW2 at HASYLAB. Parameters ---------- filename : str a string with the name of the SPECTRA file mcatmp : str, optional template for the MCA files mcastart, mcastop : int, optional start and stop index for the MCA files, if not given, the class tries to determine the start and stop index automatically. """
[docs] def __init__(self, filename, mcatmp=None, mcastart=None, mcastop=None): self.filename = filename self.comments = SPECTRAFileComments() self.params = SPECTRAFileParameters() self.data = SPECTRAFileData() self.mca = None self.mca_channels = None self.Read() # reads the .fio data file if mcatmp is not None: self.mca_file_template = mcatmp if mcastart is not None and mcastop is not None: self.mca_start_index = mcastart self.mca_stop_index = mcastop else: # try to determine the number of MCA spectra automatically spat = self.mca_file_template.replace("%i", "*") lst = glob.glob(spat) self.mca_start_index = 1 self.mca_stop_index = 0 if lst: self.mca_stop_index = self.data.data.size # len(l) if self.mca_stop_index != 0: self.ReadMCA()
[docs] def Save2HDF5(self, h5file, name, group="/", mcaname="MCA"): """ Saves the scan to an HDF5 file. The scan is saved to a seperate group of name "name". h5file is either a string for the file name or a HDF5 file object. If the mca attribute is not None mca data will be stored to an chunked array of with name mcaname. Parameters ---------- h5file : file-handle or str HDF5 file object or name name : str name of the group where to store the data group : str, optional root group where to store the data mcaname : str, optional Name of the MCA in the HDF5 file Returns ------- bool or None The method returns None in the case of everything went fine, True otherwise. """ with xu_h5open(h5file, 'w') as h5: # create the group where to store the data try: g = h5.create_group(group + '/' + name) except ValueError: print("XU.io.spectra.Save2HDF5: cannot create group %s for " "writing data!" % name) return True # start with saving scan comments for k in self.comments: try: g.attrs[k] = self.comments[k] except IndexError: print("XU.io.spectra.Save2HDF5: cannot save file comment " "%s = %s to group %s!" % (k, self.comments[k], name)) # save scan parameters for k in self.params: try: g.attrs[k] = self.params[k] except IndexError: print("XU.io.spectra.Save2HDF5: cannot save file parametes" " %s to group %s!" % (k, name)) # ----------finally we need to save the data ------------------- kwds = {'fletcher32': True, 'compression': 'gzip'} try: g.create_dataset("data", data=self.data.data, **kwds) except (RuntimeError, ValueError): print("XU.io.spectra.Save2HDF5: cannot create table for " "storing scan data!") return True # if there is MCA data - store this if self.mca is not None: try: c = g.create_dataset(mcaname, data=self.mca, **kwds) except (RuntimeError, ValueError): print("XU.io.spectra.Save2HDF5: cannot create carray %s " "for MCA data!" % mcaname) return True # set MCA specific attributes c.attrs["channels"] = self.mca_channels c.attrs["nchannels"] = self.mca_channels.shape[0] h5.flush() return None
[docs] def ReadMCA(self): dlist = [] for i in range(self.mca_start_index, self.mca_stop_index + 1): fname = self.mca_file_template % i data = numpy.loadtxt(fname) if i == self.mca_start_index: if len(data.shape) == 2: self.mca_channels = data[:, 0] else: self.mca_channels = numpy.arange(0, data.shape[0]) if len(data.shape) == 2: dlist.append(data[:, 1].tolist()) else: dlist.append(data.tolist()) self.mca = numpy.array(dlist, dtype=float)
def __str__(self): ostr = self.params.__str__() ostr += self.data.__str__() return ostr
[docs] def Read(self): """ Read the data from the file. """ def addkeyval(lst, k, v): """ add new key to a list. if key already exists a number will be appended to the key name Parameters ---------- lst : list k : str key v : object value """ kcnt = 0 key = k while key in lst: key = k + "_%i" % (kcnt + 1) kcnt += 1 lst[key] = v read_mode = 0 col_names = [] col_types = [] rec_list = [] with open(self.filename, 'rb') as fid: for line in fid: line = line.decode('utf8', 'ignore') line = line.strip() # read the next line if the line starts with a "!" if re_end_section.match(line): continue # select which section to read if re_comment_section.match(line): read_mode = 1 continue elif re_parameter_section.match(line): read_mode = 2 continue elif re_data_section.match(line): read_mode = 3 continue # here we decide how to proceed with the data if read_mode == 1: # read the file comments try: (key, value) = line.split("=") except ValueError: # avoid annoying output if config.VERBOSITY >= config.INFO_ALL: print("XU.io.SPECTRAFile.Read: cannot interpret " "the comment string: %s" % (line)) continue key = key.strip() # remove whitespaces to be conform with natural naming key = key.replace(' ', '') key = key.replace(':', '_') # remove possible number at first position if re_num.findall(key[0]) != []: key = "_" + key value = value.strip() if config.VERBOSITY >= config.DEBUG: print("XU.io.SPECTRAFile.Read: " f"comment({key}): {value}") try: value = float(value) except ValueError: pass # need to handle the case, that a key may appear several # times in the list addkeyval(self.comments, key, value) elif read_mode == 2: # read scan parameters try: (key, value) = line.split("=") except ValueError: print("XU.io.SPECTRAFile.Read: cannot interpret the " f"parameter string: {line}") key = key.strip() # remove whitespaces to be conform with natural naming key = key.replace(' ', '') key = key.replace(':', '_') # remove possible number at first position if re_num.findall(key[0]) != []: key = "_" + key value = value.strip() if config.VERBOSITY >= config.DEBUG: print("XU.io.SPECTRAFile.Read: parameter: k, v: %s, %s" % (key, value)) try: value = float(value) except ValueError: # if the conversion of the parameter to float # fails it will be saved as a string pass # need to handle the case, that a key may appear several # times in the list addkeyval(self.params, key, value) elif read_mode == 3: if re_column.match(line): try: unit = re_unit.findall(line)[0] except IndexError: unit = "NONE" try: sline = re_obracket.split(line) if len(sline) == 1: raise IndexError lval = sline[0] rval = re_cbracket.split(line)[-1] dtype = rval.strip() lv = re_wspaces.split(lval) index = int(lv[1]) name = "".join(lv[2:]) name = name.replace(':', '_') except IndexError: lv = re_wspaces.split(line) index = int(lv[1]) dtype = lv[-1] name = "".join(lv[2:-1]) name = name.replace(':', '_') # store column definition self.data.append( SPECTRAFileDataColumn(index, name, unit, dtype)) if name in col_names: name += f"{name}_1" col_names.append(f"{name}") col_types.append(f"{dtype_map[dtype]}") else: # read data dlist = re_wspaces.split(line) for i in range(len(dlist)): dlist[i] = float(dlist[i]) rec_list.append(tuple(dlist)) if config.VERBOSITY >= config.DEBUG: print("XU.io.SPECTRAFile.Read: data columns: name, type: %s, %s" % (col_names, col_types)) if rec_list: self.data.data = rec.fromrecords(rec_list, formats=col_types, names=col_names) else: self.data.data = None
[docs] def geth5_spectra_map(h5file, scans, *args, **kwargs): """ function to obtain the omega and twotheta as well as intensity values for a reciprocal space map saved in an HDF5 file, which was created from a spectra file by the Save2HDF5 method. further more it is possible to obtain even more positions from the data file if more than two string arguments with its names are given Parameters ---------- h5f : file-handle or str file object of a HDF5 file opened using h5py scans : int, tuple or list number of the scans of the reciprocal space map args: str, optional arbitrary number of motor names - omname: name of the omega motor (or its equivalent) - ttname: name of the two theta motor (or its equivalent) kwargs : dict, optional mca : str, optional name of the mca data (if available). default: "MCA" samplename : str, optional string with the hdf5-group containing the scan data if omitted the first child node of h5f.root will be used to determine the sample name Returns ------- [ang1, ang2, ...] : list angular positions of the center channel of the position sensitive detector (numpy.ndarray 1D). one entry for every `args`-argument given to the function MAP : ndarray the data values as stored in the data file (includes the intensities e.g. MAP['MCA']). """ with xu_h5open(h5file) as h5: mca = kwargs.get('mca', 'MCA') if "samplename" in kwargs: basename = kwargs["samplename"] else: nodename = list(h5)[0] basenlist = re_underscore.split(nodename) basename = "_".join(basenlist[:-1]) if config.VERBOSITY >= config.DEBUG: print("XU.io.spectra.geth5_spectra_map: using \'%s\' as " "basename" % (basename)) if isinstance(scans, (list, tuple)): scanlist = scans else: scanlist = list([scans]) angles = dict.fromkeys(args) for key in angles: angles[key] = numpy.zeros(0) buf = numpy.zeros(0) MAP = numpy.zeros(0) for nr in scanlist: h5scan = h5.get(basename + "_%05d" % nr) sdata = h5scan.get('data') mcanode = h5.get(basename + "_%05d/%s" % (nr, mca)) mcadata = numpy.asarray(mcanode) # append scan data to MAP, where all data are stored mcatemp = mcadata.view([(mca, (mcadata.dtype, mcadata.shape[1]))]) sdtmp = numpy.lib.recfunctions.merge_arrays([sdata, mcatemp], flatten=True) if MAP.dtype == numpy.float64: MAP.dtype = sdtmp.dtype MAP = numpy.append(MAP, sdtmp) # check type of scan notscanmotors = [] for i in range(len(args)): motname = args[i] try: buf = sdata[motname] scanshape = buf.shape angles[motname] = numpy.concatenate((angles[motname], buf)) except ValueError: notscanmotors.append(i) for i in notscanmotors: motname = args[i] buf = numpy.ones(scanshape) * \ h5scan.attrs.get(f"{motname}") angles[motname] = numpy.concatenate((angles[motname], buf)) retval = [] for motname in args: # create return values in correct order retval.append(angles[motname]) return retval, MAP