Source code for xrayutilities.gridder2d

# This file is part of xrayutilities.
#
# xrayutilities is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>.
#
# Copyright (C) 2009-2010, 2013
#               Eugen Wintersberger <eugen.wintersberger@desy.de>
# Copyright (C) 2009 Mario Keplinger <mario.keplinger@jku.at>
# Copyright (c) 2009-2021, 2023 Dominik Kriegner <dominik.kriegner@gmail.com>

import numpy

from . import cxrayutilities, exception, utilities
from .gridder import Gridder, GridderFlags, axis, delta, ones


[docs] class Gridder2D(Gridder):
[docs] def __init__(self, nx, ny): Gridder.__init__(self) # check input if nx <= 0 or ny <= 0: raise exception.InputError('Neither nx nor ny can be smaller' 'than 1!') self.xmin = None self.ymin = None self.xmax = None self.ymax = None self.nx = nx self.ny = ny self._allocate_memory()
def _allocate_memory(self): """ Class method to allocate memory for the gridder based on the nx, ny class attributes. """ self._gdata = numpy.zeros((self.nx, self.ny), dtype=numpy.double) self._gnorm = numpy.zeros((self.nx, self.ny), dtype=numpy.double)
[docs] def savetxt(self, filename, header=''): """ save gridded data to a txt file with two columns. The first two columns are the data coordinates and the last one the corresponding data value. Parameters ---------- filename : str output filename header : str, optional optional header for the data file. """ numpy.savetxt(filename, numpy.vstack((self.xmatrix.flat, self.ymatrix.flat, self.data.flat)).T, header=header, fmt='%.6g %.6g %.4g')
[docs] def SetResolution(self, nx, ny): """ Reset the resolution of the gridder. In this case the original data stored in the object will be deleted. Parameters ---------- nx : int number of points in x-direction ny : int number of points in y-direction """ self.nx = nx self.ny = ny self._allocate_memory()
def __get_xaxis(self): return axis(self.xmin, self.xmax, self.nx) def __get_yaxis(self): return axis(self.ymin, self.ymax, self.ny) def __get_xmatrix(self): return ones(self.nx, self.ny) * self.xaxis[:, numpy.newaxis] def __get_ymatrix(self): return ones(self.nx, self.ny) * self.yaxis[numpy.newaxis, :] yaxis = property(__get_yaxis) xaxis = property(__get_xaxis) xmatrix = property(__get_xmatrix) ymatrix = property(__get_ymatrix)
[docs] def dataRange(self, xmin, xmax, ymin, ymax, fixed=True): """ define minimum and maximum data range, usually this is deduced from the given data automatically, however, for sequential gridding it is useful to set this before the first call of the gridder. data outside the range are simply ignored Parameters ---------- xmin, ymin : float minimum value of the gridding range in x, y xmax, ymax : float maximum value of the gridding range in x, y fixed : bool, optional flag to turn fixed range gridding on (True (default)) or off (False) """ self.fixed_range = fixed self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax
def _checktransinput(self, x, y, data): """ common checks and reshape commands for the input data. This function checks the data type and shape of the input data. """ if not self.keep_data: self.Clear() x = self._prepare_array(x) y = self._prepare_array(y) data = self._prepare_array(data) if x.size != y.size or y.size != data.size: raise exception.InputError( f"XU.{self.__class__.__name__}: size of given datasets " "(x, y, data) is not equal!") if not self.fixed_range: # assume that with setting keep_data the user wants to call the # gridder more often and obtain a reasonable result self.dataRange(x.min(), x.max(), y.min(), y.max(), self.keep_data) return x, y, data
[docs] def __call__(self, x, y, data): """ Perform gridding on a set of data. After running the gridder the 'data' object in the class is holding the gridded data. Parameters ---------- x : ndarray numpy array of arbitrary shape with x positions y : ndarray numpy array of arbitrary shape with y positions data : ndarray numpy array of arbitrary shape with data values """ x, y, data = self._checktransinput(x, y, data) # remove normalize flag for C-code flags = self.flags | GridderFlags.NO_NORMALIZATION cxrayutilities.gridder2d(x, y, data, self.nx, self.ny, self.xmin, self.xmax, self.ymin, self.ymax, self._gdata, self._gnorm, flags)
[docs] class FuzzyGridder2D(Gridder2D): """ An 2D binning class considering every data point to have a finite area. If necessary one data point will be split fractionally over different data bins. This is numerically more effort but represents better the typical case of a experimental data, which do not represent a mathematical point but have a finite size (e.g. X-ray data from a 2D detector or reciprocal space maps measured with point/linear detector). Currently only a rectangular area can be considered during the gridding. """
[docs] def __call__(self, x, y, data, **kwargs): """ Perform gridding on a set of data. After running the gridder the 'data' object in the class is holding the gridded data. Parameters ---------- x : ndarray numpy array of arbitrary shape with x positions y : ndarray numpy array of arbitrary shape with y positions data : ndarray numpy array of arbitrary shape with data values width : float or tuple or list, optional width of one data point. If not given half the bin size will be used. The width can be given as scalar if it is equal for both data dimensions, or as sequence of length 2. """ valid_kwargs = {'width': 'specifiying fuzzy data size'} utilities.check_kwargs(kwargs, valid_kwargs, self.__class__.__name__) x, y, data = self._checktransinput(x, y, data) if 'width' in kwargs: try: length = len(kwargs['width']) except TypeError: length = 1 if length == 2: wx, wy = kwargs['width'] else: wx = kwargs['width'] wy = wx else: wx = delta(self.xmin, self.xmax, self.nx) / 2. wy = delta(self.ymin, self.ymax, self.ny) / 2. # remove normalize flag for C-code flags = self.flags | GridderFlags.NO_NORMALIZATION cxrayutilities.fuzzygridder2d(x, y, data, self.nx, self.ny, self.xmin, self.xmax, self.ymin, self.ymax, self._gdata, self._gnorm, wx, wy, flags)
[docs] class Gridder2DList(Gridder2D): """ special version of a 2D gridder which performs no actual averaging of the data in one grid/bin but just collects the data-objects belonging to one bin for further treatment by the user """ def _allocate_memory(self): """ Class method to allocate memory for the gridder based on the nx, ny class attributes. """ self._gdata = numpy.empty((self.nx, self.ny), dtype=list) for i in range(self.nx): for j in range(self.ny): self._gdata[i, j] = [] self._gnorm = numpy.zeros((self.nx, self.ny), dtype=int)
[docs] def Clear(self): self._allocate_memory()
def __get_data(self): """ return gridded data, in this special version no normalization is defined! """ return self._gdata.copy() data = property(__get_data)
[docs] def __call__(self, x, y, data): """ Perform gridding on a set of data. After running the gridder the 'data' object in the class is holding the lists of data-objects belonging to one bin/grid-point. Parameters ---------- x : ndarray numpy array of arbitrary shape with x positions y : ndarray numpy array of arbitrary shape with y positions data : ndarray, list or tuple data of same length as x, y but of arbitrary type """ x, y, data = self._checktransinput(x, y, data) # perform gridding this should be moved to native code if possible def gindex(x, min, delt): return numpy.round((x - min) / delt).astype(int) xdelta = delta(self.xmin, self.xmax, self.nx) ydelta = delta(self.ymin, self.ymax, self.ny) for i in range(len(x)): xidx = gindex(x[i], self.xmin, xdelta) yidx = gindex(y[i], self.ymin, ydelta) self._gdata[xidx, yidx].append(data[i]) self._gnorm[xidx, yidx] += 1