Source code for xrayutilities.experiment

# This file is part of xrayutilities.
#
# xrayutilities is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, see <http://www.gnu.org/licenses/>.
#
# Copyright (C) 2009-2010 Eugen Wintersberger <eugen.wintersberger@desy.de>
# Copyright (c) 2009-2023 Dominik Kriegner <dominik.kriegner@gmail.com>
# Copyright (C) 2012 Tanja Etzelstorfer <tanja.etzelstorfer@jku.at>

"""
module helping with planning and analyzing experiments.
various classes are provided for describing experimental geometries,
calculationof angular coordinates of Bragg reflections, conversion of angular
coordinates to Q-space and determination of powder diffraction peak positions.

The strength of the module is the versatile QConversion module which can be
configured to describe almost any goniometer geometry.
"""

import copy
import enum
import numbers
import re
import warnings

import numpy
from numpy.linalg import norm

# package internal imports
from . import config, cxrayutilities, math, utilities
from .exception import InputError, UsageError

# regular expression to check goniometer circle syntax
directionSyntax = re.compile("[xyz][+-]")
circleSyntaxDetector = re.compile("([xyz][+-])|(t[xyz])")
circleSyntaxSample = re.compile("[xyzk][+-]")


[docs] class QConvFlags(enum.IntFlag): NONE = 0 HAS_TRANSLATIONS = 1 HAS_SAMPLEDIS = 4 VERBOSE = 16
[docs] class QConversion: """ Class for the conversion of angular coordinates to momentum space for arbitrary goniometer geometries and X-ray energy. Both angular scans (where some goniometer angles change during data acquisition) and energy scans (where the energy is varied during acquisition) as well as mixed cases can be treated. the class is configured with the initialization and does provide three distinct routines for conversion to momentum space for * point detector: point(...) or __call__() * linear detector: linear(...) * area detector: area(...) linear() and area() can only be used after the init_linear() or init_area() routines were called """ _valid_init_kwargs = {'en': 'x-ray energy', 'wl': 'x-ray wavelength', 'UB': 'orientation/orthonormalization matrix'} _valid_call_kwargs = {'delta': 'angle offsets', 'wl': 'x-ray wavelength', 'en': 'x-ray energy', 'UB': 'orientation/orthonormalization matrix', 'deg': 'True if angles are in degrees', 'sampledis': 'sample displacement vector'} _valid_linear_kwargs = {'Nav': 'number of channels for block-average', 'roi': 'region of interest'}
[docs] def __init__(self, sampleAxis, detectorAxis, r_i, **kwargs): """ initialize QConversion object. This means the rotation axis of the sample and detector circles need to be given: starting with the outer most circle. Parameters ---------- sampleAxis : list or tuple sample circles, e.g. ['x+', 'z+'] would mean two sample circles whereas the outer one turns righthanded around the x axis and the inner one turns righthanded around z. detectorAxis : list or tuple detector circles e.g. ['x-'] would mean a detector arm with a single motor turning lefthanded around the x-axis. r_i : array-like vector giving the direction of the primary beam (length is relevant only if translations are involved) kwargs : dict, optional optional keyword arguments wl : float or str, optional wavelength of the x-rays in angstrom en : float or str, optional energy of the x-rays in electronvolt UB : array-like, optional matrix for conversion from (hkl) coordinates to Q of sample used to determine not Q but (hkl) (default: identity matrix) """ utilities.check_kwargs(kwargs, self._valid_init_kwargs, self.__class__.__name__) # initialize some needed variables self._kappa_dir = numpy.array((numpy.nan, numpy.nan, numpy.nan)) # set/check sample and detector axis geometry self._set_sampleAxis(sampleAxis) self._set_detectorAxis(detectorAxis) # r_i: primary beam direction if isinstance(r_i, (list, tuple, numpy.ndarray)): self.r_i = numpy.array(r_i, dtype=numpy.double) if self.r_i.size != 3: print("XU.QConversion: warning invalid primary beam " "direction given -> using [0, 1, 0]") self.r_i = numpy.array([0, 1, 0], dtype=numpy.double) else: raise TypeError("QConversion: invalid type of primary beam " "direction r_i, must be tuple, list or " "numpy.ndarray") # kwargs self._set_wavelength(kwargs.get("wl", config.WAVELENGTH)) if "en" in kwargs: self._set_energy(kwargs["en"]) self._set_UB(kwargs.get('UB', numpy.identity(3))) self._linear_init = False self._area_init = False self._area_detrotaxis_set = False
def _set_energy(self, energy): self._en = utilities.energy(energy) self._wl = utilities.en2lam(self._en) def _set_wavelength(self, wl): self._wl = utilities.wavelength(wl) self._en = utilities.lam2en(self._wl) def _get_energy(self): return self._en def _get_wavelength(self): return self._wl def _set_sampleAxis(self, sampleAxis): """ property handler for _sampleAxis checks if a syntactically correct list of sample circles is given Parameters ---------- sampleAxis : list or tuple sample circles, e.g. ['x+', 'z+'] """ if isinstance(sampleAxis, (str, list, tuple)): if isinstance(sampleAxis, str): sAxis = list([sampleAxis]) else: sAxis = list(sampleAxis) for circ in sAxis: if not isinstance(circ, str) or len(circ) != 2: raise InputError("QConversion: incorrect sample circle " "type or syntax (%s)" % repr(circ)) if not circleSyntaxSample.search(circ): raise InputError("QConversion: incorrect sample circle " "syntax (%s)" % circ) if circ[0] == 'k': # determine kappa rotation axis self._kappa_dir = math.getVector(circ) if config.VERBOSITY >= config.DEBUG: print("XU.QConversion: kappa_dir: (%5.3f %5.3f %5.3f)" % tuple(self._kappa_dir)) else: raise TypeError("Qconversion error: invalid type for sampleAxis, " "must be str, list, or tuple") self._sampleAxis = sAxis self._sampleAxis_str = '' for circ in self._sampleAxis: self._sampleAxis_str += circ def _get_sampleAxis(self): """ property handler for _sampleAxis Returns ------- list sample axes following the syntax /[xyzk][+-]/ """ return self._sampleAxis def _set_detectorAxis(self, detectorAxis, detrot=False): """ property handler for _detectorAxis_ checks if a syntactically correct list of detector circles is given Parameters ---------- detectorAxis : list or tuple detector circles, e.g. ['x+'] detrot : bool, optional flag to tell that the detector rotation is going to be added (used internally to avoid double adding of detector rotation axis) """ has_translations = False if isinstance(detectorAxis, (str, list, tuple)): if isinstance(detectorAxis, str): dAxis = list([detectorAxis]) else: dAxis = list(detectorAxis) for circ in dAxis: if not isinstance(circ, str) or len(circ) != 2: raise InputError("QConversion: incorrect detector circle " "type or syntax (%s)" % repr(circ)) if not circleSyntaxDetector.search(circ): raise InputError("QConversion: incorrect detector circle " "syntax (%s)" % circ) if circ[0] == 't': has_translations = True else: raise TypeError("Qconversion error: invalid type for " "detectorAxis, must be str, list or tuple") self._detectorAxis = dAxis self._detectorAxis_str = '' self._has_translations = has_translations for circ in self._detectorAxis: self._detectorAxis_str += circ if detrot: self._area_detrotaxis_set = True else: self._area_init = False def _get_detectorAxis(self): """ property handler for _detectorAxis Returns ------- list of detector axis following the syntax /[xyz][+-]/ """ return self._detectorAxis def _get_UB(self): return self._UB def _set_UB(self, UB): """ set the orientation matrix used in the Qconversion needs to be (3, 3) matrix """ tmp = numpy.array(UB) if tmp.shape != (3, 3) and tmp.size != 9: raise InputError("QConversion: incorrect shape of UB matrix " "(shape: %s)" % str(tmp.shape)) self._UB = tmp.reshape((3, 3)) energy = property(_get_energy, _set_energy) wavelength = property(_get_wavelength, _set_wavelength) sampleAxis = property(_get_sampleAxis, _set_sampleAxis) detectorAxis = property(_get_detectorAxis, _set_detectorAxis) UB = property(_get_UB, _set_UB) def __str__(self): pstr = 'QConversion geometry \n' pstr += '---------------------------\n' pstr += f'sample geometry({len(self._sampleAxis)}): ' + \ self._sampleAxis_str + '\n' if self._sampleAxis_str.find('k') != -1: pstr += ('kappa rotation axis (%5.3f %5.3f %5.3f)\n' % tuple(self._kappa_dir)) pstr += f'detector geometry({len(self._detectorAxis)}): ' + \ self._detectorAxis_str + '\n' pstr += ('primary beam direction: (%5.2f %5.2f %5.2f) \n' % (self.r_i[0], self.r_i[1], self.r_i[2])) if self._linear_init: pstr += '\n linear detector initialized:\n' pstr += 'linear detector mount direction: ' + \ self._linear_detdir + '\n' pstr += ('number of channels/center channel: %d/%d\n' % (self._linear_Nch, self._linear_cch)) pstr += ('distance to center of rotation/pixel width: ' '%10.4g/%10.4g\n' % (self._linear_distance, self._linear_pixwidth)) chpdeg = 2 * self._linear_distance / \ self._linear_pixwidth * numpy.tan(numpy.radians(0.5)) pstr += f'corresponds to channel per degree: {chpdeg:8.2f}\n' if self._area_init: pstr += '\n area detector initialized:\n' pstr += 'area detector mount directions: %s/%s\n' % ( self._area_detdir1, self._area_detdir2) pstr += ('number of channels/center channels: (%d,%d) / (%d,%d)\n' % (self._area_Nch1, self._area_Nch2, self._area_cch1, self._area_cch2)) pstr += ('distance to center of rotation/pixel width: ' '%10.4g/ (%10.4g,%10.4g) \n' % (self._area_distance, self._area_pwidth1, self._area_pwidth2)) chpdeg1 = 2 * self._area_distance / \ self._area_pwidth1 * numpy.tan(numpy.radians(0.5)) chpdeg2 = 2 * self._area_distance / \ self._area_pwidth2 * numpy.tan(numpy.radians(0.5)) pstr += 'corresponds to channel per degree: (%8.2f,%8.2f)\n' % ( chpdeg1, chpdeg2) return pstr def _checkInput(self, *args): """ helper function to check that the arguments given to the QConversion routines have the correct shape. It determines the number of points in the input from the longest array/list given and checks that only inputs combatible with this length are given Parameters ---------- args : list arguments from the QConversion routine (sample and detector angles) Returns ------- Npoints : int integer to tell the number of points given """ np = 1 for a in args: # optain size of input if isinstance(a, numpy.ndarray): anp = a.size elif isinstance(a, (list, tuple)): anp = len(a) elif isinstance(a, numbers.Number): anp = 1 else: raise TypeError('QConversion: Input argument #%d has an ' 'invalid type.' % args.index(a)) # check if the input field is valid if anp > 1 and np == 1: np = anp elif anp > 1 and np != anp: raise InputError('QConversion: Several input-arrays arguments ' 'with different shape are an invalid input!') return np def _reshapeInput(self, npoints, delta, circles, *args, **kwargs): """ helper function to reshape the input of arguments to (len(args), npoints) The input arguments must be either scalars or are of length npoints. Parameters ---------- npoints : int length of the input arrays delta : list or array-like value to substract from the input arguments as array with len(args) circles : list list of circle description to decide if degree/radians conversion is needed args : list input arrays and scalars kwargs : dict, optional optional keyword argument to tell if values of rotation axis should be converted to radiants (name= 'deg', default=True) Returns ------- inarr : ndarray array of shape (len(args), npoints) with the input arguments retshape : tuple shape of return values """ inarr = numpy.empty((len(args), npoints), dtype=numpy.double) retshape = (npoints,) # default value deg2rad = kwargs.get('deg', True) for i in range(len(args)): arg = args[i] if not isinstance(arg, (numbers.Number, list, tuple, numpy.ndarray)): raise TypeError("QConversion: invalid type for one of the " "sample coordinates, must be scalar, list or " "array") if isinstance(arg, numbers.Number): arg = numpy.ones(npoints, dtype=numpy.double) * arg elif isinstance(arg, (list, tuple)): arg = numpy.array(arg, dtype=numpy.double) else: # determine return value shape retshape = arg.shape arg = arg - delta[i] if deg2rad and circleSyntaxSample.search(circles[i]): inarr[i, :] = numpy.radians(numpy.ravel(arg)) else: inarr[i, :] = numpy.ravel(arg) return inarr, retshape def _parse_common_kwargs(self, **kwargs): """ parse common keyword arguments to QConversion calls Parameters ---------- delta : list or array-like, optional delta angles to correct the given ones for misalignment. delta must be an numpy array or list of len(*args). used angles are than ``*args - delta`` UB : array-like, optional matrix for conversion from (hkl) coordinates to Q of sample used to determine not Q but (hkl) (default: self.UB) wl : float or str, optional x-ray wavelength in angstrom (default: self._wl) en : float, optional x-ray energy in eV (default is converted self._wl). both wavelength and energy can also be an array which enables the QConversion for energy scans. Note that the `en` keyword overrules the `wl` keyword! deg : bool, optional flag to tell if angles are passed as degree (default: True) sampledis : tuple or list or array-like sample displacement vector in relative units of the detector distance. Applies to parallel beam geometry. (default: (0, 0, 0)) """ flags = QConvFlags.NONE if self._has_translations: flags |= QConvFlags.HAS_TRANSLATIONS Ns = len(self.sampleAxis) Nd = len(self.detectorAxis) if self._area_detrotaxis_set: Nd -= 1 # do not consider detector rotation for point detector Ncirc = Ns + Nd # kwargs wl = utilities.wavelength(kwargs.get('wl', self._wl)) if 'en' in kwargs: wl = utilities.lam2en(utilities.energy(kwargs['en'])) deg = kwargs.get('deg', True) delta = numpy.asarray(kwargs.get('delta', numpy.zeros(Ncirc)), dtype=numpy.double) if delta.size != Ncirc: raise InputError("QConversion: keyword argument delta does " "not have an appropriate shape") UB = numpy.asarray(kwargs.get('UB', self.UB)) sd = numpy.asarray(kwargs.get('sampledis', [0, 0, 0])) if 'sampledis' in kwargs: flags |= QConvFlags.HAS_SAMPLEDIS return Ns, Nd, Ncirc, wl, deg, delta, UB, sd, flags
[docs] def __call__(self, *args, **kwargs): """ wrapper function for point(...) """ return self.point(*args, **kwargs)
[docs] def point(self, *args, **kwargs): """ angular to momentum space conversion for a point detector located in direction of self.r_i when detector angles are zero Parameters ---------- args : ndarray, list or Scalars sample and detector angles; in total `len(self.sampleAxis) + len(detectorAxis)` must be given, always starting with the outer most circle. all arguments must have the same shape or length but can be mixed with Scalars (i.e. if an angle is always the same it can be given only once instead of an array) - sAngles : sample circle angles, number of arguments must correspond to len(self.sampleAxis) - dAngles : detector circle angles, number of arguments must correspond to len(self.detectorAxis) kwargs : dict, optional optional keyword arguments delta : list or array-like, optional delta angles to correct the given ones for misalignment. delta must be an numpy array or list of ``len(*args)``. used angles are then ``*args - delta`` UB : array-like, optional matrix for conversion from (hkl) coordinates to Q of sample used to determine not Q but (hkl) (default: self.UB) wl : float or str, optional x-ray wavelength in angstrom (default: self._wl) en : float, optional x-ray energy in eV (default is converted self._wl). both wavelength and energy can also be an array which enables the QConversion for energy scans. Note that the `en` keyword overrules the `wl` keyword! deg : bool, optional flag to tell if angles are passed as degree (default: True) sampledis : tuple or list or array-like sample displacement vector in relative units of the detector distance. Applies to parallel beam geometry. (default: (0, 0, 0)) Returns ------- ndarray reciprocal space positions as numpy.ndarray with shape ``(N , 3)`` where `N` corresponds to the number of points given in the input """ utilities.check_kwargs(kwargs, self._valid_call_kwargs, 'Ang2Q/point') Ns, Nd, Ncirc, wl, deg, delta, UB, sd, flags = \ self._parse_common_kwargs(**kwargs) # prepare angular arrays from *args # need one sample angle and one detector angle array if len(args) != Ncirc: raise InputError("QConversion: wrong amount (%d) of arguments " "given, number of arguments should be %d" % (len(args), Ncirc)) # determine the number of points a = args + (wl,) Npoints = self._checkInput(*a) # reshape/recast input arguments for sample and detector angles sAngles, retshape = self._reshapeInput(Npoints, delta[:Ns], self.sampleAxis, *args[:Ns], deg=deg) dAngles = self._reshapeInput(Npoints, delta[Ns:], self.detectorAxis, *args[Ns:], deg=deg)[0] wl = numpy.ravel(self._reshapeInput(Npoints, (0, ), 'a', wl, deg=False)[0]) sAngles = sAngles.transpose() dAngles = dAngles.transpose() sAxis = self._sampleAxis_str dAxis = self._detectorAxis_str if self._area_detrotaxis_set: # do not consider detector rotation for point detector dAxis = self._detectorAxis_str[:-2] else: dAxis = self._detectorAxis_str if config.VERBOSITY >= config.DEBUG: print("XU.QConversion: Ns, Nd: %d %d" % (Ns, Nd)) print(f"XU.QConversion: sAngles / dAngles {str(sAngles)} / " f"{str(dAngles)}") qpos = cxrayutilities.ang2q_conversion( sAngles, dAngles, self.r_i, sAxis, dAxis, self._kappa_dir, UB, sd, wl, config.NTHREADS, flags) if Npoints == 1: return (qpos[0, 0], qpos[0, 1], qpos[0, 2]) return numpy.reshape(qpos[:, 0], retshape), \ numpy.reshape(qpos[:, 1], retshape), \ numpy.reshape(qpos[:, 2], retshape)
[docs] def init_linear(self, detectorDir, cch, Nchannel, distance=None, pixelwidth=None, chpdeg=None, tilt=0, **kwargs): """ initialization routine for linear detectors detector direction as well as distance and pixel size or channels per degree must be given. Parameters ---------- detectorDir : str direction of the detector (along the pixel array); e.g. 'z+' cch : float center channel, in direction of self.r_i at zero detectorAngles Nchannel : int total number of detector channels distance : float, optional distance of center channel from center of rotation pixelwidth : float, optional width of one pixel (same unit as distance) chpdeg : float, optional channels per degree (only absolute value is relevant) sign determined through detectorDir tilt : float, optional tilt of the detector axis from the detectorDir (in degree) kwargs: dict, optional optional keyword arguments Nav : int, optional number of channels to average to reduce data size (default: 1) roi : tuple or list region of interest for the detector pixels; e.g. [100, 900] Note: Either distance and pixelwidth or chpdeg must be given !! Note: the channel numbers run from 0 .. Nchannel-1 """ utilities.check_kwargs(kwargs, self._valid_linear_kwargs, 'init_linear') # detectorDir if not isinstance(detectorDir, str) or len(detectorDir) != 2: raise InputError("QConversion: incorrect detector direction type " "or syntax (%s)" % repr(detectorDir)) if not directionSyntax.search(detectorDir): raise InputError("QConversion: incorrect detector direction " "syntax (%s)" % detectorDir) self._linear_detdir = detectorDir self._linear_Nch = int(Nchannel) self._linear_cch = float(cch) self._linear_tilt = numpy.radians(tilt) if distance is not None and pixelwidth is not None: self._linear_distance = float(distance) self._linear_pixwidth = float(pixelwidth) elif chpdeg is not None: self._linear_distance = 1.0 self._linear_pixwidth = 2 * self._linear_distance / \ numpy.abs(float(chpdeg)) * numpy.tan(numpy.radians(0.5)) else: # not all needed values were given raise InputError("QConversion: not all mandatory arguments were " "given -> read API doc, need distance and " "pixelwidth or chpdeg") # kwargs self._linear_roi = kwargs.get('roi', [0, self._linear_Nch]) self._linear_nav = kwargs.get('Nav', 1) # rescale r_i self.r_i = math.VecUnit(self.r_i) * self._linear_distance self._linear_init = True
def _get_detparam_linear(self, oroi, nav): """ initialize linear detector geometry for C subroutines. This function considers the Nav and roi options. """ cch = self._linear_cch / float(nav) pwidth = self._linear_pixwidth * nav roi = numpy.array(oroi) roi[0] = numpy.floor(oroi[0] / float(nav)) roi[1] = numpy.ceil((oroi[1] - oroi[0]) / float(nav)) + roi[0] roi = roi.astype(numpy.int32) return cch, pwidth, roi
[docs] def linear(self, *args, **kwargs): """ angular to momentum space conversion for a linear detector the cch of the detector must be in direction of self.r_i when detector angles are zero the detector geometry must be initialized by the init_linear(...) routine Parameters ---------- args : ndarray, list or Scalars sample and detector angles; in total `len(self.sampleAxis) + len(detectorAxis)` must be given, always starting with the outer most circle. all arguments must have the same shape or length but can be mixed with Scalars (i.e. if an angle is always the same it can be given only once instead of an array) - sAngles : sample circle angles, number of arguments must correspond to len(self.sampleAxis) - dAngles : detector circle angles, number of arguments must correspond to len(self.detectorAxis) kwargs : dict, optional optional keyword arguments delta : list or array-like, optional delta angles to correct the given ones for misalignment. delta must be an numpy array or list of ``len(*args)``. used angles are then ``*args - delta`` UB : array-like, optional matrix for conversion from (hkl) coordinates to Q of sample used to determine not Q but (hkl) (default: self.UB) Nav : int, optional number of channels to average to reduce data size (default: self._linear_nav) roi : list or tuple, optional region of interest for the detector pixels; e.g. [100, 900] (default: self._linear_roi) wl : float or str, optional x-ray wavelength in angstrom (default: self._wl) en : float, optional x-ray energy in eV (default is converted self._wl). both wavelength and energy can also be an array which enables the QConversion for energy scans. Note that the `en` keyword overrules the `wl` keyword! deg : bool, optional flag to tell if angles are passed as degree (default: True) sampledis : tuple or list or array-like sample displacement vector in relative units of the detector distance. Applies to parallel beam geometry. (default: (0, 0, 0)) Returns ------- reciprocal space position of all detector pixels in a numpy.ndarray of shape ( (*)*(self._linear_roi[1]-self._linear_roi[0]+1) , 3 ) """ if not self._linear_init: raise UsageError("QConversion: linear detector not initialized -> " "call Ang2Q.init_linear(...)") valid_kwargs = copy.copy(self._valid_call_kwargs) valid_kwargs.update(self._valid_linear_kwargs) utilities.check_kwargs(kwargs, valid_kwargs, 'Ang2Q/linear') Ns, _, Ncirc, wl, deg, delta, UB, sd, flags = \ self._parse_common_kwargs(**kwargs) # extra keyword arguments nav = kwargs.get('Nav', self._linear_nav) oroi = kwargs.get('roi', self._linear_roi) # prepare angular arrays from *args # need one sample angle and one detector angle array if len(args) != Ncirc: raise InputError("QConversion: wrong amount (%d) of arguments " "given, number of arguments should be %d" % (len(args), Ncirc)) # determine the number of points a = args + (wl,) Npoints = self._checkInput(*a) # reshape/recast input arguments for sample and detector angles sAngles = self._reshapeInput(Npoints, delta[:Ns], self.sampleAxis, *args[:Ns], deg=deg)[0] dAngles = self._reshapeInput(Npoints, delta[Ns:], self.detectorAxis, *args[Ns:], deg=deg)[0] wl = numpy.ravel( self._reshapeInput(Npoints, (0, ), 'a', wl, deg=False)[0]) sAngles = sAngles.transpose() dAngles = dAngles.transpose() cch, pwidth, roi = self._get_detparam_linear(oroi, nav) sAxis = self._sampleAxis_str dAxis = self._detectorAxis_str qpos = cxrayutilities.ang2q_conversion_linear( sAngles, dAngles, self.r_i, sAxis, dAxis, self._kappa_dir, cch, pwidth, roi, self._linear_detdir, self._linear_tilt, UB, sd, wl, config.NTHREADS, flags) # reshape output if Npoints == 1: qpos.shape = (Npoints * (roi[1] - roi[0]), 3) return qpos[:, 0], qpos[:, 1], qpos[:, 2] qpos.shape = (Npoints, (roi[1] - roi[0]), 3) return qpos[:, :, 0], qpos[:, :, 1], qpos[:, :, 2]
[docs] def init_area(self, detectorDir1, detectorDir2, cch1, cch2, Nch1, Nch2, distance=None, pwidth1=None, pwidth2=None, chpdeg1=None, chpdeg2=None, detrot=0, tiltazimuth=0, tilt=0, **kwargs): """ initialization routine for area detectors detector direction as well as distance and pixel size or channels per degree must be given. Two separate pixel sizes and channels per degree for the two orthogonal directions can be given Parameters ---------- detectorDir1 : str direction of the detector (along the pixel direction 1); e.g. 'z+' means higher pixel numbers at larger z positions detectorDir2 : str direction of the detector (along the pixel direction 2); e.g. 'x+' cch1, cch2 : float center pixel, in direction of self.r_i at zero detectorAngles Nch1, Nch2 : int number of detector pixels along direction 1, 2 distance : float, optional distance of center pixel from center of rotation pwidth1, pwidth2 : float, optional width of one pixel (same unit as distance) chpdeg1, chpdeg2 : float, optional channels per degree (only absolute value is relevant) sign determined through `detectorDir1, detectorDir2` detrot : float, optional angle of the detector rotation around primary beam direction (used to correct misalignments) tiltazimuth : float, optional direction of the tilt vector in the detector plane (in degree) tilt : float, optional tilt of the detector plane around an axis normal to the direction given by the tiltazimuth kwargs : dict, optional optional keyword arguments Nav : tuple or list, optional number of channels to average to reduce data size (default: [1, 1]) roi : tuple or list, optional region of interest for the detector pixels; e.g. [100, 900, 200, 800] Note: Either distance and pwidth1, pwidth2 or chpdeg1, chpdeg2 must be given !! Note: the channel numbers run from 0 .. NchX-1 """ utilities.check_kwargs(kwargs, self._valid_linear_kwargs, 'init_area') # detectorDir if not isinstance(detectorDir1, str) or len(detectorDir1) != 2: raise InputError("QConversion: incorrect detector direction1 type " "or syntax (%s)" % repr(detectorDir1)) if not directionSyntax.search(detectorDir1): raise InputError("QConversion: incorrect detector direction1 " "syntax (%s)" % detectorDir1) self._area_detdir1 = detectorDir1 if not isinstance(detectorDir2, str) or len(detectorDir2) != 2: raise InputError("QConversion: incorrect detector direction2 type " "or syntax (%s)" % repr(detectorDir2)) if not directionSyntax.search(detectorDir2): raise InputError("QConversion: incorrect detector direction2 " "syntax (%s)" % detectorDir2) self._area_detdir2 = detectorDir2 # other none keyword arguments self._area_Nch1 = int(Nch1) self._area_Nch2 = int(Nch2) self._area_cch1 = float(cch1) self._area_cch2 = float(cch2) # if detector rotation is present add new motor to consider it in # conversion self._area_detrot = numpy.radians(detrot) if self._area_detrot != 0.: if self._area_detrotaxis_set: self._set_detectorAxis( self._get_detectorAxis()[:-1] + [math.getSyntax(self.r_i)], detrot=True) else: self._set_detectorAxis( self._get_detectorAxis() + [math.getSyntax(self.r_i)], detrot=True) self._area_tiltazimuth = numpy.radians(tiltazimuth) self._area_tilt = numpy.radians(tilt) # mandatory keyword arguments if (distance is not None and pwidth1 is not None and pwidth2 is not None): self._area_distance = float(distance) self._area_pwidth1 = float(pwidth1) self._area_pwidth2 = float(pwidth2) elif chpdeg1 is not None and chpdeg2 is not None: self._area_distance = 1.0 self._area_pwidth1 = 2 * self._area_distance / \ numpy.abs(float(chpdeg1)) * numpy.tan(numpy.radians(0.5)) self._area_pwidth2 = 2 * self._area_distance / \ numpy.abs(float(chpdeg2)) * numpy.tan(numpy.radians(0.5)) else: # not all needed values were given raise InputError("Qconversion error: not all mandatory arguments " "were given -> read API doc") # kwargs self._area_roi = kwargs.get('roi', [0, self._area_Nch1, 0, self._area_Nch2]) self._area_nav = kwargs.get('Nav', [1, 1]) # rescale r_i self.r_i = math.VecUnit(self.r_i) * self._area_distance self._area_init = True
def _get_detparam_area(self, oroi, nav): """ initialize CCD geomtry for C subroutines. This function considers the Nav and roi options. """ cch1 = self._area_cch1 / float(nav[0]) cch2 = self._area_cch2 / float(nav[1]) pwidth1 = self._area_pwidth1 * nav[0] pwidth2 = self._area_pwidth2 * nav[1] roi = numpy.array(oroi) roi[0] = numpy.floor(oroi[0] / float(nav[0])) roi[1] = numpy.ceil((oroi[1] - oroi[0]) / float(nav[0])) + roi[0] roi[2] = numpy.floor(oroi[2] / float(nav[1])) roi[3] = numpy.ceil((oroi[3] - oroi[2]) / float(nav[1])) + roi[2] roi = roi.astype(numpy.int32) return cch1, cch2, pwidth1, pwidth2, roi
[docs] def area(self, *args, **kwargs): """ angular to momentum space conversion for a area detector the center pixel defined by the init_area routine must be in direction of self.r_i when detector angles are zero the detector geometry must be initialized by the init_area(...) routine Parameters ---------- args : ndarray, list or Scalars sample and detector angles; in total `len(self.sampleAxis) + len(detectorAxis)` must be given, always starting with the outer most circle. all arguments must have the same shape or length but can be mixed with Scalars (i.e. if an angle is always the same it can be given only once instead of an array) - sAngles : sample circle angles, number of arguments must correspond to len(self.sampleAxis) - dAngles : detector circle angles, number of arguments must correspond to len(self.detectorAxis) kwargs : dict, optional optional keyword arguments delta : list or array-like, optional delta angles to correct the given ones for misalignment. delta must be an numpy array or list of ``len(*args)``. used angles are then ``*args - delta`` UB : array-like, optional matrix for conversion from (hkl) coordinates to Q of sample used to determine not Q but (hkl) (default: self.UB) Nav : tuple or list, optional number of channels to average to reduce data size e.g. [2, 2] (default: self._area_nav) roi : list or tuple, optional region of interest for the detector pixels; e.g. [100, 900, 200, 800] (default: self._area_roi) wl : float or str, optional x-ray wavelength in angstrom (default: self._wl) en : float, optional x-ray energy in eV (default is converted self._wl). both wavelength and energy can also be an array which enables the QConversion for energy scans. Note that the `en` keyword overrules the `wl` keyword! deg : bool, optional flag to tell if angles are passed as degree (default: True) sampledis : tuple or list or array-like sample displacement vector in relative units of the detector distance. Applies to parallel beam geometry. (default: (0, 0, 0)) Returns ------- reciprocal space position of all detector pixels in a numpy.ndarray of shape ((*)*(self._area_roi[1] - self._area_roi[0]+1) * (self._area_roi[3] - self._area_roi[2] + 1) , 3) were detectorDir1 is the fastest varing """ if not self._area_init: raise UsageError("QConversion: area detector not initialized -> " "call Ang2Q.init_area(...)") valid_kwargs = copy.copy(self._valid_call_kwargs) valid_kwargs.update(self._valid_linear_kwargs) utilities.check_kwargs(kwargs, valid_kwargs, 'Ang2Q/area') Ns, Nd, Ncirc, wl, deg, delta, UB, sd, flags = \ self._parse_common_kwargs(**kwargs) # extra keyword arguments nav = kwargs.get('Nav', self._area_nav) oroi = kwargs.get('roi', self._area_roi) # prepare angular arrays from *args # need one sample angle and one detector angle array if len(args) != Ncirc: raise InputError("QConversion: wrong amount (%d) of arguments " "given, number of arguments should be %d" % (len(args), Ncirc)) # determine the number of points a = args + (wl,) Npoints = self._checkInput(*a) # reshape/recast input arguments for sample and detector angles sAngles = self._reshapeInput(Npoints, delta[:Ns], self.sampleAxis, *args[:Ns], deg=deg)[0] wl = numpy.ravel( self._reshapeInput(Npoints, (0, ), 'a', wl, deg=False)[0]) if self._area_detrotaxis_set: Nd = Nd + 1 if deg: a = args[Ns:] + (numpy.degrees(self._area_detrot),) else: a = args[Ns:] + (self._area_detrot,) dAngles = self._reshapeInput( Npoints, numpy.append(delta[Ns:], 0), self.detectorAxis, *a, deg=deg)[0] else: dAngles = self._reshapeInput(Npoints, delta[Ns:], self.detectorAxis, *args[Ns:], deg=deg)[0] sAngles = sAngles.transpose() dAngles = dAngles.transpose() cch1, cch2, pwidth1, pwidth2, roi = self._get_detparam_area(oroi, nav) if config.VERBOSITY >= config.DEBUG: print("QConversion.area: roi, number of points per frame: %s, %d" % (str(roi), (roi[1] - roi[0]) * (roi[3] - roi[2]))) print(f"QConversion.area: cch1, cch2: {cch1:5.2f} {cch2:5.2f}") sAxis = self._sampleAxis_str dAxis = self._detectorAxis_str qpos = cxrayutilities.ang2q_conversion_area( sAngles, dAngles, self.r_i, sAxis, dAxis, self._kappa_dir, cch1, cch2, pwidth1, pwidth2, roi, self._area_detdir1, self._area_detdir2, self._area_tiltazimuth, self._area_tilt, UB, sd, wl, config.NTHREADS, flags) # reshape output if Npoints == 1: qpos.shape = ((roi[1] - roi[0]), (roi[3] - roi[2]), 3) return qpos[:, :, 0], qpos[:, :, 1], qpos[:, :, 2] qpos.shape = (Npoints, (roi[1] - roi[0]), (roi[3] - roi[2]), 3) return qpos[:, :, :, 0], qpos[:, :, :, 1], qpos[:, :, :, 2]
[docs] def transformSample2Lab(self, vector, *args): """ transforms a vector from the sample coordinate frame to the laboratory coordinate system by applying the sample rotations from inner to outer circle. Parameters ---------- vector : sequence, list or numpy array vector to transform args : list goniometer angles (sample angles or full goniometer angles can be given. If more angles than the sample circles are given they will be ignored) Returns ------- ndarray rotated vector as numpy.array """ rotvec = vector for i in range(len(self.sampleAxis)-1, -1, -1): a = args[i] axis = self.sampleAxis[i] rota = math.getVector(axis) rotvec = math.rotarb(rotvec, rota, a) return rotvec
[docs] def getDetectorPos(self, *args, **kwargs): """ obtains the detector position vector by applying the detector arm rotations. Parameters ---------- args : list detector angles. Only detector arm angles as described by the detectorAxis attribute must be given. kwargs : dict, optional optional keyword arguments dim : int, optional dimension of the detector for which the position should be determined roi : tuple or list, optional region of interest for the detector pixels; (default: self._area_roi/self._linear_roi) Nav : tuple or list, optional number of channels to average to reduce data size; (default: self._area_nav/self._linear_nav) deg : bool, optional flag to tell if angles are passed as degree (default: True) Returns ------- ndarray numpy array of length 3 with vector components of the detector direction. The length of the vector is k. """ valid_kwargs = copy.copy(self._valid_linear_kwargs) valid_kwargs['dim'] = 'dimensionality of the detector' valid_kwargs['deg'] = 'True if angles are in degrees' utilities.check_kwargs(kwargs, valid_kwargs, 'get_detector_pos') dim = kwargs.get('dim', 0) if dim == 1 and not self._linear_init: raise UsageError("QConversion: linear detector not initialized -> " "call Ang2Q.init_linear(...)") if dim == 2 and not self._area_init: raise UsageError("QConversion: area detector not initialized -> " "call Ang2Q.init_area(...)") Nd = len(self.detectorAxis) if self._area_detrotaxis_set: Nd = Nd - 1 # kwargs deg = kwargs.get('deg', True) # prepare angular arrays from *args # need one sample angle and one detector angle array if len(args) != Nd: raise InputError(f"QConversion: wrong amount ({len(args)}) of " "arguments given, number of arguments should be " f"{Nd}") # determine the number of points and reshape input arguments Npoints = self._checkInput(*args) if dim == 2 and self._area_detrotaxis_set: Nd = Nd + 1 if deg: a = args + (numpy.degrees(self._area_detrot),) else: a = args + (self._area_detrot,) dAngles, retshape = self._reshapeInput( Npoints, numpy.append(numpy.zeros(Nd), 0), self.detectorAxis, *a, deg=deg) else: dAngles, retshape = self._reshapeInput(Npoints, numpy.zeros(Nd), self.detectorAxis, *args, deg=deg) dAngles = dAngles.transpose() dAxis = self._detectorAxis_str if dim == 2: oroi = kwargs.get('roi', self._area_roi) nav = kwargs.get('Nav', self._area_nav) cch1, cch2, pwidth1, pwidth2, roi = self._get_detparam_area(oroi, nav) cfunc = cxrayutilities.ang2q_detpos_area dpos = cfunc(dAngles, self.r_i, dAxis, cch1, cch2, pwidth1, pwidth2, roi, self._area_detdir1, self._area_detdir2, self._area_tiltazimuth, self._area_tilt, config.NTHREADS) # reshape output if Npoints == 1: dpos.shape = ((roi[1] - roi[0]), (roi[3] - roi[2]), 3) return dpos[:, :, 0], dpos[:, :, 1], dpos[:, :, 2] dpos.shape = (Npoints, (roi[1] - roi[0]), (roi[3] - roi[2]), 3) return dpos[:, :, :, 0], dpos[:, :, :, 1], dpos[:, :, :, 2] if dim == 1: oroi = kwargs.get('roi', self._linear_roi) nav = kwargs.get('Nav', self._linear_nav) cch, pwidth, roi = self._get_detparam_linear(oroi, nav) cfunc = cxrayutilities.ang2q_detpos_linear dpos = cfunc(dAngles, self.r_i, dAxis, cch, pwidth, roi, self._linear_detdir, self._linear_tilt, config.NTHREADS) # reshape output if Npoints == 1: dpos.shape = (Npoints * (roi[1] - roi[0]), 3) return dpos[:, 0], dpos[:, 1], dpos[:, 2] dpos.shape = (Npoints, (roi[1] - roi[0]), 3) return dpos[:, :, 0], dpos[:, :, 1], dpos[:, :, 2] cfunc = cxrayutilities.ang2q_detpos dpos = cfunc(dAngles, self.r_i, dAxis, config.NTHREADS) if Npoints == 1: return (dpos[0, 0], dpos[0, 1], dpos[0, 2]) return numpy.reshape(dpos[:, 0], retshape), \ numpy.reshape(dpos[:, 1], retshape), \ numpy.reshape(dpos[:, 2], retshape)
[docs] def getDetectorDistance(self, *args, **kwargs): """ obtains the detector distance by applying the detector arm movements. This is especially interesting for the case of 1 or 2D detectors to perform certain geometric corrections. Parameters ---------- args : list detector angles. Only detector arm angles as described by the detectorAxis attribute must be given. kwargs : dict, optional optional keyword arguments dim : int, optional dimension of the detector for which the position should be determined roi : tuple or list, optional region of interest for the detector pixels; (default: self._area_roi/self._linear_roi) Nav : tuple or list, optional number of channels to average to reduce data size; (default: self._area_nav/self._linear_nav) deg : bool, optional flag to tell if angles are passed as degree (default: True) Returns ------- ndarray numpy array with the detector distance """ x, y, z = self.getDetectorPos(*args, **kwargs) return numpy.sqrt(x**2 + y**2 + z**2)
[docs] class Experiment: """ base class for describing experiments users should use the derived classes: HXRD, GID, PowderExperiment """ _valid_init_kwargs = {'en': 'x-ray energy', 'wl': 'x-ray wavelength', 'qconv': 'reciprocal space conversion', 'sampleor': 'sample orientation'}
[docs] def __init__(self, ipdir, ndir, **keyargs): """ initialization of an Experiment class needs the sample orientation given by the samples surface normal and an second not colinear direction specifying the inplane reference direction in the crystal coordinate system. The orientation of the surface normal in the lab coordinate system can also be given or is automatically determined by the goniometer type (see argument sampleor). Parameters ---------- ipdir : list or tuple or array-like inplane reference direction (ipdir points into the primary beam direction at zero angles) ndir : list or tuple or array-like surface normal of your sample. ndir points in a direction perpendicular to the primary beam, how it is orientated in real space is determined by the parameter sampleor (see below). keyargs : dict, optional optional keyword arguments qconv : QConversion, optional QConversion object to use for the Ang2Q conversion sampleor : {'det', 'sam', '[xyz][+-]'}, optional determines the sample surface orientation with respect to the coordinate system in which the goniometer rotations are given. You can use the [xyz][+-] syntax to specify the nominal surface orientation (when all goniometer angles are zero). In addition two special values 'det' and 'sam' are available, which will let the code determine the orientation from either the inner most detector or sample rotation. 'det' means the surface is in the plane spanned by the inner most detector rotation (rotation around primary beam is ignored) and perpendicular to the primary beam. 'sam' means the surface orientation is along the innermost sample circles rotation direction (in this case this should be the azimuth motor to yield the expected results). Default is 'det'. Restrictions: the given direction can not be along the primary beam. If one needs that case, let the maintainer know. Currently this case is caught and a different axis is automatically used as z-axis. wl : float or str wavelength of the x-rays in angstrom (default: 1.5406A) en : float or str energy of the x-rays in eV (default: 8048eV == 1.5406A ). the en keyword overrules the wl keyword Note: The qconv argument does not change the Q2Ang function's behavior. See Q2AngFit function in case you want to calculate for arbitrary goniometers with some restrictions. """ utilities.check_kwargs(keyargs, self._valid_init_kwargs, self.__class__.__name__) if isinstance(ipdir, (list, tuple, numpy.ndarray)): self.idir = math.VecUnit(ipdir) else: raise TypeError("Inplane direction must be list or numpy array") if isinstance(ndir, (list, tuple, numpy.ndarray)): self.ndir = math.VecUnit(ndir) else: raise TypeError("normal direction must be list or numpy array") # test the given direction to be not parallel and warn if not # perpendicular if numpy.isclose(norm(numpy.cross(self.idir, self.ndir)), 0): raise InputError("given inplane direction is parallel to normal " "direction, they must be linear independent!") if not numpy.isclose(numpy.abs(numpy.dot(self.idir, self.ndir)), 0): self.idir = numpy.cross( numpy.cross(self.ndir, self.idir), self.ndir) self.idir = self.idir / norm(self.idir) warnings.warn("Experiment: given inplane direction is not " "perpendicular to normal direction\n -> Experiment " "class uses the following direction with the same " "azimuth:\n %s" % (' '.join(map( str, numpy.round(self.idir, 3))))) # initialize Ang2Q conversion self._A2QConversion = keyargs.get( 'qconv', QConversion('x+', 'x+', [0, 1, 0])) self.Ang2Q = self._A2QConversion self._sampleor = keyargs.get('sampleor', 'det') # set the coordinate transform for the azimuth used in the experiment self.scatplane = math.VecUnit(numpy.cross(self.idir, self.ndir)) self._set_transform(self.scatplane, self.idir, self.ndir, self._sampleor) # calculate the energy from the wavelength self._set_wavelength(keyargs.get('wl', config.WAVELENGTH)) if "en" in keyargs: self._set_energy(keyargs["en"])
def __str__(self): ostr = "scattering plane normal: (%f %f %f)\n" % (self.scatplane[0], self.scatplane[1], self.scatplane[2]) ostr += "inplane azimuth: (%f %f %f)\n" % (self.idir[0], self.idir[1], self.idir[2]) ostr += "second refercence direction: (%f %f %f)\n" % (self.ndir[0], self.ndir[1], self.ndir[2]) ostr += f"energy: {self._en:f} (eV)\n" ostr += f"wavelength: {self._wl:f} (angstrom)\n" ostr += self._A2QConversion.__str__() return ostr def _set_transform(self, v1, v2, v3, sampleor='det'): """ set new transformation of the coordinate system to use in the experimental class. The sampleor variable determines the sample surface orientation with respect to the coordinate system in which the goniometer rotations are given. You can use the [xyz][+-] syntax to specify the nominal surface orientation (when all goniometer angles are zero). In addition two special values 'det' and 'sam' are available, which will let the code determine the orientation from either the inner most detector or sample rotation. 'det' means the surface is in the plane spanned by the inner most detector rotation (rotation around primary beam is ignored) and perpendicular to the primary beam. 'sam' means the surface orientation is along the innermost sample circles rotation direction (in this case this should be the azimuth motor to yield the expected results). Default is 'det'. Restrictions: the given direction can not be along the primary beam. If one needs that case, let the maintainer know. Currently this case is caught and a different axis is automatically used as z-axis. """ # turn idir to Y and ndir to Z self._t1 = math.CoordinateTransform(v1, v2, v3) if sampleor == 'det': yi = self._A2QConversion.r_i idc = self._A2QConversion.detectorAxis[-1] xi = math.getVector(idc) if numpy.isclose(norm(numpy.cross(xi, yi)), 0): # this is the case when a detector rotation around the primary # beam direction is installed idc = self._A2QConversion.detectorAxis[-2] xi = math.getVector(idc) zi = math.VecUnit(numpy.cross(xi, yi)) elif sampleor == 'sam': yi = self._A2QConversion.r_i isc = self._A2QConversion.sampleAxis[-1] zi = numpy.abs(math.getVector(isc)) if numpy.all(numpy.abs(yi) == numpy.abs(zi)): zi = numpy.roll(zi, 1) if config.VERBOSITY >= config.INFO_LOW: print("XU.Experiment: Warning, sample orientation " "convention failed. Using (%.3f %.3f %.3f) " "as internal z-axis" % (zi[0], zi[1], zi[2])) xi = math.VecUnit(numpy.cross(yi, zi)) else: yi = self._A2QConversion.r_i try: zi = math.getVector(sampleor) except InputError: raise InputError('invalid value of sample orientation, use ' 'either [xyz][+-] syntax or det/sam!') if numpy.all(numpy.abs(yi) == numpy.abs(zi)): zi = numpy.roll(zi, 1) if config.VERBOSITY >= config.INFO_LOW: print("XU.Experiment: Warning, sample orientation " "convention failed. Using (%.3f %.3f %.3f) " "as internal z-axis" % (zi[0], zi[1], zi[2])) xi = math.VecUnit(numpy.cross(yi, zi)) # turn r_i to Y and Z defined by detector rotation plane self._t2 = math.CoordinateTransform(xi, yi, zi) self._transform = math.Transform( numpy.dot(numpy.linalg.inv(self._t2.matrix), self._t1.matrix)) def _set_energy(self, energy): self._en = utilities.energy(energy) self._wl = utilities.en2lam(self._en) self.k0 = numpy.pi * 2. / self._wl self._A2QConversion.wavelength = self._wl def _set_wavelength(self, wl): self._wl = utilities.wavelength(wl) self._en = utilities.lam2en(self._wl) self.k0 = numpy.pi * 2. / self._wl self._A2QConversion.wavelength = self._wl def _get_energy(self): return self._en def _get_wavelength(self): return self._wl energy = property(_get_energy, _set_energy) wavelength = property(_get_wavelength, _set_wavelength) def _set_inplane_direction(self, dir): self.idir = math.VecUnit(dir) v1 = numpy.cross(self.ndir, self.idir) self._set_transform(v1, self.idir, self.ndir, self._sampleor) def _get_inplane_direction(self): return self.idir def _set_normal_direction(self, dir): self.ndir = math.VecUnit(dir) v1 = numpy.cross(self.ndir, self.idir) self._set_transform(v1, self.idir, self.ndir, self._sampleor) def _get_normal_direction(self): return self.ndir
[docs] def Q2Ang(self, qvec): pass
[docs] def Ang2HKL(self, *args, **kwargs): """ angular to (h, k, l) space conversion. It will set the UB argument to Ang2Q and pass all other parameters unchanged. See Ang2Q for description of the rest of the arguments. Parameters ---------- args : list arguments forwarded to Ang2Q kwargs : dict, optional optional keyword arguments B : array-like, optional reciprocal space conversion matrix of a Crystal. You can specify the matrix B (default identiy matrix) shape needs to be (3, 3) mat : Crystal, optional Crystal object to use to obtain a B matrix (e.g. xu.materials.Si) can be used as alternative to the B keyword argument B is favored in case both are given U : array-like, optional orientation matrix U can be given. If none is given the orientation defined in the Experiment class is used. dettype : {'point', 'linear', 'area'}, optional detector type: decides which routine of Ang2Q to call. default 'point' delta : ndarray, list or tuple, optional giving delta angles to correct the given ones for misalignment. delta must be an numpy array or list of length 2. used angles are than ``(om, tt) - delta`` wl : float or str, optional x-ray wavelength in angstrom (default: self._wl) en : float or str, optional x-ray energy in eV (default: converted self._wl) deg : bool, optional flag to tell if angles are passed as degree (default: True) sampledis : tuple or list or array-like sample displacement vector in relative units of the detector distance. Applies to parallel beam geometry. (default: (0, 0, 0)) Returns ------- ndarray H K L coordinates as numpy.ndarray with shape `(N , 3)` where `N` corresponds to the number of points given in the input (args) """ valid_kwargs = {'B': 'orthonormalization matrix', 'U': 'orientation matrix', 'mat': 'material object', 'dettype': 'string with detector type'} valid_kwargs.update(QConversion._valid_call_kwargs) del valid_kwargs['UB'] utilities.check_kwargs(kwargs, valid_kwargs, 'Ang2HKL') if "B" in kwargs: B = numpy.array(kwargs['B']) kwargs.pop("B") elif "mat" in kwargs: mat = kwargs['mat'] B = mat.B kwargs.pop("mat") else: B = numpy.identity(3) if "U" in kwargs: U = numpy.array(kwargs['U']) kwargs.pop("U") else: U = self._transform.matrix kwargs['UB'] = numpy.dot(U, B) if "dettype" in kwargs: typ = kwargs['dettype'] if typ not in ('point', 'linear', 'area'): raise InputError("wrong dettype given: needs to be one of " "'point', 'linear', 'area'") kwargs.pop("dettype") else: typ = 'point' if typ == 'linear': return self.Ang2Q.linear(*args, **kwargs) if typ == 'area': return self.Ang2Q.area(*args, **kwargs) return self.Ang2Q(*args, **kwargs)
[docs] def Transform(self, v): """ transforms a vector, matrix or tensor of rank 4 (e.g. elasticity tensor) to the coordinate frame of the Experiment class. This is for example necessary before any Q2Ang-conversion can be performed. Parameters ---------- v : object to transform, list or numpy array of shape (n,) (n, n), (n, n, n, n) where n is the rank of the transformation matrix Returns ------- transformed object of the same shape as v """ return self._transform(v)
[docs] def TiltAngle(self, q, deg=True): """ TiltAngle(q, deg=True): Return the angle between a q-space position and the surface normal. Parameters ---------- q : list or numpy array with the reciprocal space position optional keyword arguments: deg : True/False whether the return value should be in degree or radians (default: True) """ if isinstance(q, list): qt = numpy.array(q, dtype=numpy.double) elif isinstance(q, numpy.ndarray): qt = q else: raise TypeError("q-space position must be list or numpy array") return math.VecAngle(self.ndir, qt, deg)
def _prepare_qvec(self, Q): """ check and reshape input to have the same q array for all possible types of input """ if len(Q) < 3: Q = Q[0] if len(Q) < 3: raise InputError("need 3 q-space vector components") if isinstance(Q, (list, tuple, numpy.ndarray)): q = numpy.asarray(Q, dtype=numpy.double) else: raise TypeError("Q vector must be a list, tuple or numpy array") if len(q.shape) != 2: q = q.reshape(3, -1) return q.T
[docs] class HXRD(Experiment): """ class describing high angle x-ray diffraction experiments the class helps with calculating the angles of Bragg reflections as well as helps with analyzing measured data the class describes a two circle (omega, twotheta) goniometer to help with coplanar x-ray diffraction experiments. Nevertheless 3D data can be treated with the use of linear and area detectors. see "help(HXRDInstance.Ang2Q)" """
[docs] def __init__(self, idir, ndir, geometry='hi_lo', **keyargs): """ initialization routine for the HXRD Experiment class Parameters ---------- idir, ndir, keyargs : same as for the Experiment base class -> please look at the docstring of Experiment.__init__ for more details geometry : {'hi_lo', 'lo_hi', 'real'}, optional determines the scattering geometry : - 'hi_lo' (default) high incidence-low exit - 'lo_hi' low incidence - high exit - 'real' general geometry - q-coordinates determine high or low incidence """ if "qconv" not in keyargs: keyargs['qconv'] = QConversion('x+', 'x+', [0, 1, 0]) if geometry in ["hi_lo", "lo_hi", "real"]: self.geometry = geometry else: raise InputError("HXRD: invalid value for the geometry " "argument given") Experiment.__init__(self, idir, ndir, **keyargs) if config.VERBOSITY >= config.DEBUG: print( "XU.HXRD.__init__: \nEnergy: %s \nGeometry: %s \n%s---" % (self._en, self.geometry, str( self.Ang2Q)))
# pylint: disable-next=method-hidden
[docs] def Ang2Q(self, om, tt, **kwargs): """ angular to momentum space conversion for a point detector. Also see help HXRD.Ang2Q for procedures which treat line and area detectors Parameters ---------- om, tt : float or array-like sample and detector angles as numpy array, lists or Scalars must be given. All arguments must have the same shape or length. However, if one angle is always the same its enough to give one scalar value. kwargs : dict, optional optional keyword arguments delta : list or array-like giving delta angles to correct the given ones for misalignment. delta must be an numpy array or list of length 2. Used angles are than om, tt - delta UB : array-like matrix for conversion from (hkl) coordinates to Q of sample used to determine not Q but (hkl) (default: identity matrix) wl : float or str, optional x-ray wavelength in angstrom (default: self._wl) deg : bool, optional flag to tell if angles are passed as degree (default: True) Returns ------- ndarray reciprocal space positions as numpy.ndarray with shape `(N , 3)` where `N` corresponds to the number of points given in the input """
# dummy function to have some documentation string available # the real function is generated dynamically in the __init__ routine
[docs] def Q2Ang(self, *Q, **keyargs): """ Convert a reciprocal space vector Q to COPLANAR scattering angles. The keyword argument trans determines whether Q should be transformed to the experimental coordinate frame or not. The coplanar scattering angles correspond to a goniometer with sample rotations ['x+', 'y+', 'z-'] and detector rotation 'x+' and primary beam along y. This is a standard four circle diffractometer. Note: The behavior of this function is unchanged if the goniometer definition is changed! Parameters ---------- Q : list, tuple or array-like array of shape (3) with q-space vector components or 3 separate lists with qx, qy, qz trans : bool, optional apply coordinate transformation on Q (default True) deg : book, optional (default True) determines if the angles are returned in radians or degrees geometry : {'hi_lo', 'lo_hi', 'real', 'realTilt'}, optional determines the scattering geometry (default: self.geometry): - 'hi_lo' high incidence and low exit - 'lo_hi' low incidence and high exit - 'real' general geometry with angles determined by q-coordinates (azimuth); this and upper geometries return [omega, 0, phi, twotheta] - 'realTilt' general geometry with angles determined by q-coordinates (tilt); returns [omega, chi, phi, twotheta] refrac : bool, optional determines if refraction is taken into account; if True then also a material must be given (default: False) mat : Crystal Crystal object; needed to obtain its optical properties for refraction correction, otherwise not used full_output : bool, optional determines if additional output is given to determine scattering angles more accurately in case refraction is set to True. default: False fi, fd : tuple or list if refraction correction is applied one can optionally specify the facet through which the beam enters (fi) and exits (fd) fi, fd must be the surface normal vectors (not transformed & not necessarily normalized). If omitted the normal direction of the experiment is used. Returns ------- ndarray **full_output=False**: a numpy array of shape (4) with four scattering angles which are [omega, chi, phi, twotheta]; - omega : incidence angle with respect to surface - chi : sample tilt for the case of non-coplanar geometry - phi : sample azimuth with respect to inplane reference direction - twotheta : scattering angle/detector angle **full_output=True**: a numpy array of shape (6) with five angles which are [omega, chi, phi, twotheta, psi_i, psi_d] - psi_i : offset of the incidence beam from the scattering plane due to refraction - pdi_d : offset ot the diffracted beam from the scattering plane due to refraction """ valid_kwargs = {'trans': 'flag, perform coordinate transformation', 'deg': 'flag, return degrees', 'geometry': 'geometry string', 'refrac': 'flag', 'mat': 'Crystal instance', 'fi': 'incidence facet', 'fd': 'exit facet', 'full_output': 'see docstring for details'} utilities.check_kwargs(keyargs, valid_kwargs, 'Q2Ang') q = self._prepare_qvec(Q) # parse keyword arguments geom = keyargs.get('geometry', self.geometry) trans = keyargs.get('trans', True) deg = keyargs.get('deg', True) mat = keyargs.get('mat', None) # material for optical properties refrac = keyargs.get('refrac', False) if refrac and mat is None: # check if material is available raise InputError("keyword argument 'mat' must be set when " "'refrac' is set to True!") foutp = keyargs.get('full_output', False) fi = keyargs.get('fi', self.ndir) # incidence facet fi = math.VecUnit(self.Transform(fi)) fd = keyargs.get('fd', self.ndir) # exit facet fd = math.VecUnit(self.Transform(fd)) # set parameters for the calculation z = self.Transform(self.ndir) # z y = self.Transform(self.idir) # y x = self.Transform(self.scatplane) # x if refrac: n = numpy.real( mat.idx_refraction( self.energy)) # index of refraction k = self.k0 * n else: k = self.k0 # start calculation for each given Q-point if foutp: angle = numpy.zeros((6, q.shape[0])) else: angle = numpy.zeros((4, q.shape[0])) if trans: q = self.Transform(q) if config.VERBOSITY >= config.DEBUG: print(f"XU.HXRD.Q2Ang: q= {repr(q)}") qa = math.VecNorm(q) tth = 2. * numpy.arcsin(qa / 2. / k) # calculation of the sample azimuth phi (scattering plane # spanned by qvec[1] and qvec[2] directions) chi = -numpy.arctan2(math.VecDot(q, x), math.VecDot(q, z)) if numpy.any(numpy.isclose(numpy.abs(math.VecDot(q, z)), 0)): if config.VERBOSITY >= config.INFO_LOW: print("XU.HXRD: some position is perpendicular to ndir-" "reference direction (might be inplane or " "unreachable)") if geom == 'hi_lo': # +: high incidence geometry om = tth / 2. + math.VecAngle(q, z) phi = -numpy.arctan2(math.VecDot(q, x), math.VecDot(q, y)) elif geom == 'lo_hi': # -: low incidence geometry om = tth / 2. - math.VecAngle(q, z) phi = -numpy.arctan2(-1 * math.VecDot(q, x), -1 * math.VecDot(q, y)) elif geom == 'real': phi = -numpy.arctan2(math.VecDot(q, x), math.VecDot(q, y)) sign = numpy.ones(q.shape[0]) m = numpy.abs(phi) > numpy.pi / 2. phi = -numpy.arctan2(math.VecDot(q, x), math.VecDot(q, y)) sign[m] = -1 phi[m] = -numpy.arctan2(-1 * math.VecDot(q[m], x), -1 * math.VecDot(q[m], y)) om = tth / 2 + sign * math.VecAngle(q, z) elif geom == 'realTilt': phi = 0. om = tth / 2 + numpy.arctan2( math.VecDot(q, y), numpy.sqrt(math.VecDot(q, z) ** 2 + math.VecDot(q, x) ** 2)) else: raise ValueError("HXRD: invalid value for the geometry argument " "given\n valid entries are: hi_lo, lo_hi, real, " "realTilt") # refraction correction at incidence and exit facet psi_i = numpy.zeros_like(tth) psi_d = numpy.zeros_like(tth) # if refrac is false and full_output if refrac: beta = tth - om ki = k * (numpy.cos(om)[:, numpy.newaxis] * y[numpy.newaxis, :] - numpy.sin(om)[:, numpy.newaxis] * z[numpy.newaxis, :]) kd = k * (numpy.cos(beta)[:, numpy.newaxis] * y[numpy.newaxis, :] + numpy.sin(beta)[:, numpy.newaxis] * z[numpy.newaxis, :]) # refraction at incidence facet m = math.VecDot(ki, fi) > 0 if numpy.any(m): print("XU.HXRD: Warning, incidence facet not hit by " "primary beam for all positions! check your input!") om[m] = numpy.nan tth[m] = numpy.nan mnot = numpy.logical_not(m) cosbi = numpy.abs(math.VecDot(ki, fi) / math.VecNorm(ki)) cosb0 = numpy.sqrt(1 - n ** 2 * (1 - cosbi ** 2)) ki0 = self.k0 * (n * math.VecUnit(ki) - (numpy.sign(math.VecDot(ki, fi)) * (n * cosbi - cosb0))[:, numpy.newaxis] * fi[numpy.newaxis, :]) om[mnot] = math.VecAngle(ki0, y) psi_i[mnot] = numpy.arcsin(math.VecDot(ki0, x) / self.k0) if config.VERBOSITY >= config.DEBUG: print(f"XU.HXRD.Q2Ang: ki, ki0 = {repr(ki)} {repr(ki0)}") # refraction at exit facet m = math.VecDot(kd, fd) < 0 if numpy.any(m): print("XU.HXRD: Warning, exit facet not hit by " "diffracted beam! check your input!") om[m] = numpy.nan tth[m] = numpy.nan cosbd = numpy.abs(math.VecDot(kd, fd) / math.VecNorm(kd)) cosb0 = numpy.sqrt(1 - n ** 2 * (1 - cosbd ** 2)) kd0 = self.k0 * (n * math.VecUnit(kd) - (numpy.sign(math.VecDot(kd, fd)) * (n * cosbd - cosb0))[:, numpy.newaxis] * fd[numpy.newaxis, :]) tth[mnot] = math.VecAngle(ki0, kd0) psi_d[mnot] = numpy.arcsin(numpy.dot(kd0, x) / self.k0) if config.VERBOSITY >= config.DEBUG: print(f"XU.HXRD.Q2Ang: kd, kd0 = {repr(kd)} {repr(kd0)}") if geom == 'realTilt': angle[0, :] = om angle[1, :] = chi angle[3, :] = tth else: angle[0, :] = om angle[2, :] = phi angle[3, :] = tth if foutp: angle[4, :] = psi_i angle[5, :] = psi_d if q.shape[0] == 1: angle = angle.flatten() if config.VERBOSITY >= config.INFO_ALL: print("XU.HXRD.Q2Ang: om, chi, phi, tth,[psi_i, psi_d] = %s" % repr(angle)) if deg: return numpy.degrees(angle) return angle
[docs] class FourC(HXRD): """ class describing high angle x-ray diffraction experiments the class helps with calculating the angles of Bragg reflections as well as helps with analyzing measured data the class describes a four circle (omega, chi, phi, twotheta) goniometer to help with coplanar x-ray diffraction experiments. Nevertheless 3D data can be treated with the use of linear and area detectors. see "help(FourCInstance.Ang2Q)" """
[docs] def __init__(self, idir, ndir, **keyargs): """ initialization routine for the FourC Experiment class Parameters ---------- idir, ndir, keyargs : same as for the Experiment base class -> please look at the docstring of Experiment.__init__ for more details geometry : {'hi_lo', 'lo_hi', 'real'}, optional determines the scattering geometry : - 'hi_lo' (default) high incidence-low exit - 'lo_hi' low incidence - high exit - 'real' general geometry - q-coordinates determine high or low incidence """ if "qconv" not in keyargs: # 3S+1D goniometer (standard four-circle goniometer, # omega, chi, phi, theta) keyargs['qconv'] = QConversion(['x+', 'y+', 'z-'], 'x+', [0, 1, 0]) HXRD.__init__(self, idir, ndir, **keyargs)
[docs] class NonCOP(Experiment): """ class describing high angle x-ray diffraction experiments. The class helps with calculating the angles of Bragg reflections as well as helps with analyzing measured data for NON-COPLANAR measurements, where the tilt is used to align asymmetric peaks, like in the case of a polefigure measurement. The class describes a four circle (omega, chi, phi, twotheta) goniometer to help with x-ray diffraction experiments. Linear and area detectors can be treated as described in "help(NonCOPInstance.Ang2Q)" """
[docs] def __init__(self, idir, ndir, **keyargs): """ initialization routine for the NonCOP Experiment class Parameters ---------- idir, ndir, keyargs : same as for the Experiment base class """ if "qconv" not in keyargs: # 3S+1D goniometer (standard four-circle goniometer, # omega, chi, phi, theta) keyargs['qconv'] = QConversion(['x+', 'y+', 'z-'], 'x+', [0, 1, 0]) Experiment.__init__(self, idir, ndir, **keyargs)
# pylint: disable-next=method-hidden
[docs] def Ang2Q(self, om, chi, phi, tt, **kwargs): """ angular to momentum space conversion for a point detector. Also see help NonCOP.Ang2Q for procedures which treat line and area detectors Parameters ---------- om, chi, phi, tt : float or array-like sample and detector angles as numpy array, lists or Scalars must be given. All arguments must have the same shape or length. However, if one angle is always the same its enough to give one scalar value. kwargs : dict, optional optional keyword arguments delta : list, tuple or array-like, optional giving delta angles to correct the given ones for misalignment delta must be an numpy array or list of length 4. Used angles are than om, chi, phi, tt - delta UB : array-like, optional matrix for conversion from (hkl) coordinates to Q of sample used to determine not Q but (hkl) (default: identity matrix) wl : float or str, optional x-ray wavelength in angstrom (default: self._wl) deg : bool, optional flag to tell if angles are passed as degree (default: True) Returns ------- ndarray reciprocal space positions as numpy.ndarray with shape `(N , 3)` where `N` corresponds to the number of points given in the input """
# dummy function to have some documentation string available # the real function is generated dynamically in the __init__ routine
[docs] def Q2Ang(self, *Q, **keyargs): """ Convert a reciprocal space vector Q to NON-COPLANAR scattering angles. The keyword argument trans determines whether Q should be transformed to the experimental coordinate frame or not. Note: The behavior of this function is unchanged if the goniometer definition is changed! Parameters ---------- Q : list, tuple or array-like array of shape (3) with q-space vector components or 3 separate lists with qx, qy, qz trans : bool, optional apply coordinate transformation on Q (default True) deg : book, optional (default True) determines if the angles are returned in radians or degrees Returns ------- ndarray a numpy array of shape (4) with four scattering angles which are [omega, chi, phi, twotheta]; - omega : incidence angle with respect to surface - chi : sample tilt for the case of non-coplanar geometry - phi : sample azimuth with respect to inplane reference direction - twotheta : scattering angle/detector angle """ valid_kwargs = {'trans': 'coordinate transformation flag', 'deg': 'degree-flag'} utilities.check_kwargs(keyargs, valid_kwargs, 'Q2Ang') q = self._prepare_qvec(Q) trans = keyargs.get('trans', True) deg = keyargs.get('deg', True) angle = numpy.zeros((4, q.shape[0])) # set parameters for the calculation z = self.Transform(self.ndir) # z y = self.Transform(self.idir) # y x = self.Transform(self.scatplane) # x if trans: q = self.Transform(q) if config.VERBOSITY >= config.DEBUG: print(f"XU.NonCOP.Q2Ang: q= {repr(q)}") qa = math.VecNorm(q) tth = 2. * numpy.arcsin(qa / 2. / self.k0) om = tth / 2. # calculation of the sample azimuth # the sign depends on the phi movement direction phi = -1 * numpy.arctan2( math.VecDot(q, x), math.VecDot(q, y)) - numpy.pi / 2. chi = (math.VecAngle(q, z)) angle[0, :] = om angle[1, :] = chi angle[2, :] = phi angle[3, :] = tth if q.shape[0] == 1: angle = angle.flatten() if config.VERBOSITY >= config.INFO_ALL: print(f"XU.HXRD.Q2Ang: [om, chi, phi, tth] = {repr(angle)}") if deg: return numpy.degrees(angle) return angle
[docs] class GID(Experiment): """ class describing grazing incidence x-ray diffraction experiments the class helps with calculating the angles of Bragg reflections as well as it helps with analyzing measured data the class describes a four circle (alpha_i, azimuth, twotheta, beta) goniometer to help with GID experiments at the ROTATING ANODE. 3D data can be treated with the use of linear and area detectors. see "help(GIDInstance.Ang2Q)" Using this class the default sample surface orientation is determined by the inner most sample rotation (which is usually the azimuth motor). """
[docs] def __init__(self, idir, ndir, **keyargs): """ initialization routine for the GID Experiment class - ``idir`` defines the inplane reference direction (idir points into the PB direction at zero angles) - ``ndir`` defines the surface normal of your sample (ndir points along the innermost sample rotation axis) Parameters ---------- idir, ndir, keyargs : same as for the Experiment base class """ if 'sampleor' not in keyargs: keyargs['sampleor'] = 'sam' if "qconv" not in keyargs: # 2S+2D goniometer keyargs['qconv'] = QConversion(['z-', 'x+'], ['x+', 'z-'], [0, 1, 0]) Experiment.__init__(self, idir, ndir, **keyargs)
[docs] def Q2Ang(self, qvec, trans=True, deg=True, **kwargs): """ calculate the GID angles needed in the experiment the inplane reference direction defines the direction were the reference direction is parallel to the primary beam (i.e. lattice planes perpendicular to the beam) Note: The behavior of this function is unchanged if the goniometer definition is changed! Parameters ---------- qvec : list, tuple or array-like array of shape (3) with q-space vector components or 3 separate lists with qx, qy, qz trans : bool, optional apply coordinate transformation on Q (default True) deg : book, optional (default True) determines if the angles are returned in radians or degrees Returns ------- ndarray a numpy array of shape (4) with four GID scattering angles which are [alpha_i, azimuth, twotheta, beta]; - alpha_i : incidence angle to surface (at the moment always 0) - azimuth : sample rotation with respect to the inplane reference direction - twotheta : scattering angle - beta : exit angle from surface (at the moment always 0) """ valid_kwargs = {'trans': 'coordinate transformation flag', 'deg': 'degree-flag'} utilities.check_kwargs(kwargs, valid_kwargs, 'Q2Ang') if isinstance(qvec, list): q = numpy.array(qvec, dtype=numpy.double) elif isinstance(qvec, numpy.ndarray): q = qvec else: raise TypeError("Q vector must be a list or numpy array") if trans: q = self.Transform(q) if config.VERBOSITY >= config.INFO_ALL: print(f"XU.GID.Q2Ang: q = {repr(q)}") # set parameters for the calculation z = self.Transform(self.ndir) # z y = self.Transform(self.idir) # y x = self.Transform(self.scatplane) # x # check if reflection is inplane if numpy.abs(math.VecDot(q, z)) >= 0.001: raise InputError( f"Reflection not reachable in GID geometry (Q: {str(q)})") # calculate angle to inplane reference direction aref = numpy.arctan2(math.VecDot(q, x), math.VecDot(q, y)) # calculate scattering angle qa = math.VecNorm(q) tth = 2. * numpy.arcsin(qa / 2. / self.k0) azimuth = numpy.pi / 2 + aref + tth / 2. if deg: ang = [0, numpy.degrees(azimuth), numpy.degrees(tth), 0] else: ang = [0, azimuth, tth, 0] if config.VERBOSITY >= config.INFO_ALL: print(f"XU.GID.Q2Ang: [ai, azimuth, tth, beta] = {str(ang)}\n" f"difference to inplane reference which is {aref:5.2f}") return ang
# pylint: disable-next=method-hidden
[docs] def Ang2Q(self, ai, phi, tt, beta, **kwargs): """ angular to momentum space conversion for a point detector. Also see help GID.Ang2Q for procedures which treat line and area detectors Parameters ---------- ai, phi, tt, beta : float or array-like sample and detector angles as numpy array, lists or Scalars must be given. All arguments must have the same shape or length. However, if one angle is always the same its enough to give one scalar value. kwargs : dict, optional optional keyword arguments delta : list, tuple or array-like, optional giving delta angles to correct the given ones for misalignment delta must be an numpy array or list of length 4. Used angles are then ``ai, phi, tt, beta - delta`` UB : array-like, optional matrix for conversion from (hkl) coordinates to Q of sample used to determine not Q but (hkl) (default: identity matrix) wl : float or str, optional x-ray wavelength in angstrom (default: self._wl) deg : bool, optional flag to tell if angles are passed as degree (default: True) Returns ------- ndarray reciprocal space positions as numpy.ndarray with shape `(N , 3)` where `N` corresponds to the number of points given in the input """
# dummy function to have some documentation string available # the real function is generated dynamically in the __init__ routine
[docs] class GISAXS(Experiment): """ class describing grazing incidence x-ray diffraction experiments the class helps with calculating the angles of Bragg reflections as well as it helps with analyzing measured data the class describes a three circle (alpha_i, twotheta, beta) goniometer to help with GISAXS experiments at the ROTATING ANODE. 3D data can be treated with the use of linear and area detectors. see help self.Ang2Q """
[docs] def __init__(self, idir, ndir, **keyargs): """ initialization routine for the GISAXS Experiment class ``idir`` defines the inplane reference direction (idir points into the PB direction at zero angles) Parameters ---------- idir, ndir, keyargs : same as for the Experiment base class """ if "qconv" not in keyargs: # 1S+2D goniometer keyargs['qconv'] = QConversion(['x+'], ['x+', 'z-'], [0, 1, 0]) Experiment.__init__(self, idir, ndir, **keyargs)
[docs] def Q2Ang(self, Q, trans=True, deg=True, **kwargs): pass
# pylint: disable-next=method-hidden
[docs] def Ang2Q(self, ai, tt, beta, **kwargs): """ angular to momentum space conversion for a point detector. Also see help GISAXS.Ang2Q for procedures which treat line and area detectors Parameters ---------- ai, tt, beta : float or array-like sample and detector angles as numpy array, lists or Scalars must be given. all arguments must have the same shape or length. Howevver, if one angle is always the same its enough to give one scalar value. kwargs : dict, optional optional keyword arguments delta : list, tuple or array-like, optional giving delta angles to correct the given ones for misalignment delta must be an numpy array or list of length 3. Used angles are then ``ai, tt, beta - delta`` UB : array-like, optional matrix for conversion from (hkl) coordinates to Q of sample used to determine not Q but (hkl) (default: identity matrix) wl : float or str, optional x-ray wavelength in angstrom (default: self._wl) deg : bool, optional flag to tell if angles are passed as degree (default: True) Returns ------- ndarray reciprocal space positions as numpy.ndarray with shape `(N , 3)` where `N` corresponds to the number of points given in the input """
# dummy function to have some documentation string available # the real function is generated dynamically in the __init__ routine
[docs] class PowderExperiment(Experiment): """ Experimental class for powder diffraction which helps to convert theta angles to momentum transfer space """
[docs] def __init__(self, **kwargs): """ class constructor which takes the same keyword arguments as the Experiment class Parameters ---------- kwargs : dict, optional keyword arguments same as for the Experiment base class """ Experiment.__init__(self, [0, 1, 0], [0, 0, 1], **kwargs) self.Ang2Q = self._Ang2Q
def _Ang2Q(self, th, wl=None, deg=True): """ Converts theta angles to reciprocal space positions returns the absolute value of momentum transfer """ if deg: lth = numpy.radians(th) else: lth = th if wl: k0 = 2 * numpy.pi / wl else: k0 = self.k0 qpos = 2 * k0 * numpy.sin(lth) return qpos
[docs] def Q2Ang(self, qpos, wl=None, deg=True): """ Converts reciprocal space values to theta angles """ if wl: k0 = 2 * numpy.pi / wl else: k0 = self.k0 th = numpy.arcsin(numpy.divide(qpos, (2 * k0))) if deg: th = numpy.degrees(th) return th